Electronic structure and transport in type-I and type-VIII clathrates containing strontium, barium, and europium

The thermoelectric properties of filled gallium-germanium clathrates are analyzed from a band-structure point of view. Using the virtual crystal approximation the undoped clathrates are calculated to be semiconductors with band gaps around 0.6-0.9 eV. The conduction bands hybridize with the unoccupied d states of the guest atoms. This means that the thermoelectric properties of n-doped type-I clathrates depend strongly on the guest atom while p doped clathrates are relatively unaffected. The type-VIII structures have disperse bands centered around the voids in the framework structure. This explains the low effective masses observed for n-doped type-VIII structures. It also means that the electronic structure and thermoelectric properties are relatively independent of the guest atom and that p-doped should have favorable thermoelectric properties while n-doped type-VIII structures have poor properties. We estimate a figure of merit of 1.2 at 400 K for an optimally p-doped europium-VIII clathrate. In addition we predict that the strontium-VIII clathrate should be stable.

[1]  H. Metiu,et al.  Band structures and thermoelectric properties of the clathrates Ba8Ga16Ge30,Sr8Ga16Ge30,Ba8Ga16Si30, and Ba8In16Sn30 , 2001 .

[2]  Pickett,et al.  Smooth Fourier interpolation of periodic functions. , 1988, Physical review. B, Condensed matter.

[3]  Theoretical search for Chevrel-phase-based thermoelectric materials , 1998, cond-mat/9808056.

[4]  R. Hayn,et al.  Self-consistent LCAO-CPA method for disordered alloys , 1997 .

[5]  Vogl,et al.  Generalized Kohn-Sham schemes and the band-gap problem. , 1996, Physical review. B, Condensed matter.

[6]  George S. Nolas,et al.  Semiconducting Ge clathrates: Promising candidates for thermoelectric applications , 1998 .

[7]  H. Metiu,et al.  Siting of antimony dopants and gallium in Ba(8)Ga(16)Ge(30) clathrates grown from gallium flux. , 2002, Inorganic chemistry.

[8]  Glasslike Heat Conduction in High-Mobility Crystalline Semiconductors , 1998, cond-mat/9812387.

[9]  A. Kityk,et al.  Infinite Lifshitz point in incommensurate type-I dielectrics , 1999 .

[10]  M. Baenitz,et al.  Structural, transport, magnetic, and thermal properties of Eu8Ga16Ge30 , 2001 .

[11]  J. Zaanen,et al.  Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. , 1995, Physical review. B, Condensed matter.

[12]  P. A. Cox,et al.  Study of the 4f and valence band density of states in rare-earth metals. II. Experiment and results , 1981 .

[13]  D. Rowe,et al.  Preparation and thermoelectric properties of A8IIB16IIIB30IV clathrate compounds , 2000 .

[14]  G. Nolas,et al.  Gallium distribution in the clathrates Sr8Ga16Ge30 and Sr4Eu4Ga16Ge30 by resonant diffraction , 2002 .

[15]  I. I. Mazin,et al.  CALCULATED THERMOELECTRIC PROPERTIES OF LA-FILLED SKUTTERUDITES , 1997 .

[16]  G. Nolas,et al.  Structural disorder and thermal conductivity of the semiconducting clathrate Sr8Ga16Ge30 , 2000 .

[17]  B. Sales,et al.  Structural, magnetic, thermal, and transport properties of X{sub 8}Ga{sub 16}Ge{sub 30} (X=Eu,Sr,Ba) single crystals , 2001 .

[18]  Louie,et al.  Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies. , 1986, Physical review. B, Condensed matter.

[19]  G. Stucky,et al.  Experimental Charge Densities of Semiconducting Cage Structures Containing Alkaline Earth Guest Atoms , 2000 .

[20]  Schwarz,et al.  Applications of Engel and Vosko's generalized gradient approximation in solids. , 1994, Physical review. B, Condensed matter.

[21]  Elisabeth Sjöstedt,et al.  Efficient linearization of the augmented plane-wave method , 2001 .

[22]  H. Metiu,et al.  Nonstoichiometry and chemical purity effects in thermoelectric Ba8Ga16Ge30 clathrate , 2002 .

[23]  H. Metiu,et al.  Structure and stability of the clathrates Ba8Ga16Ge30, Sr8Ga16Ge30, Ba8Ga16Si30, and Ba8In16Sn30 , 2001 .

[24]  David J. Singh,et al.  An alternative way of linearizing the augmented-plane-wave method , 2000 .

[25]  H. Schäfer,et al.  Die verbindungen AII8BIII16BIV30 (AII ≡ Sr, Ba; BIII≡ Al, Ga; BIV ≡ Si, Ge, Sn) und ihre käfigstrukturen , 1986 .

[26]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[27]  G. Cordier,et al.  Neue ternäre intermetallische Verbindungen mit Clathratstruktur: Ba8(T,Si)6Si40 und Ba6(T,Ge)6Ge40 mit T ≡ Ni, Pd, Pt, Cu, Ag, Au , 1991 .

[28]  B. Sales,et al.  Structural disorder and magnetism of the semiconducting clathrate Eu8Ga16Ge30 , 2001 .

[29]  First-principles study of Zn-Sb thermoelectrics , 1997, cond-mat/9709148.

[30]  G. Stucky,et al.  Maximum entropy method analysis of thermal motion and disorder in thermoelectric clathrate Ba8Ga16Si30 , 2002 .