A Symmetric Fractional-order Reduction Method for Direct Nonuniform Approximations of Semilinear Diffusion-wave Equations

We introduce a symmetric fractional-order reduction (SFOR) method to construct numerical algorithms on general nonuniform temporal meshes for semilinear fractional diffusion-wave equations. By using the novel order reduction method, the governing problem is transformed to an equivalent coupled system, where the explicit orders of time-fractional derivatives involved are all α/2 (1 < α < 2). The linearized L1 scheme and Alikhanov scheme are then proposed on general time meshes. Under some reasonable regularity assumptions and weak restrictions on meshes, the optimal convergence is derived for the two kinds of difference schemes by H2 energy method. An adaptive time stepping strategy which based on the (fast linearized) L1 and Alikhanov algorithms is designed for the semilinear diffusion-wave equations. Numerical examples are provided to confirm the accuracy and efficiency of proposed algorithms.

[1]  T. Kaczorek,et al.  Fractional Differential Equations , 2015 .

[2]  Jose L. Gracia,et al.  Error Analysis of a Finite Difference Method on Graded Meshes for a Time-Fractional Diffusion Equation , 2017, SIAM J. Numer. Anal..

[3]  William McLean,et al.  Superconvergence of a Discontinuous Galerkin Method for Fractional Diffusion and Wave Equations , 2012, SIAM J. Numer. Anal..

[4]  Eduardo Cuesta,et al.  A Numerical Method for an Integro-Differential Equation with Memory in Banach Spaces: Qualitative Properties , 2003, SIAM J. Numer. Anal..

[5]  Eduardo Cuesta,et al.  Image structure preserving denoising using generalized fractional time integrals , 2012, Signal Process..

[6]  Bangti Jin,et al.  Two Fully Discrete Schemes for Fractional Diffusion and Diffusion-Wave Equations with Nonsmooth Data , 2016, SIAM J. Sci. Comput..

[7]  V. Thomée,et al.  Time discretization of an evolution equation via Laplace transforms , 2004 .

[8]  Masahiro Yamamoto,et al.  Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems , 2011 .

[9]  Xiaoping Xie,et al.  Convergence Analysis of a Petrov–Galerkin Method for Fractional Wave Problems with Nonsmooth Data , 2019, Journal of Scientific Computing.

[10]  E. Cuesta,et al.  A fractional trapezoidal rule for integro-differential equations of fractional order in Banach spaces , 2003 .

[11]  Tao Wang,et al.  Analysis of the L1 scheme for fractional wave equations with nonsmooth data , 2019, ArXiv.

[12]  Jiwei Zhang,et al.  A Second-Order Scheme with Nonuniform Time Steps for a Linear Reaction-Subdiffusion Problem , 2018, Communications in Computational Physics.

[13]  Yubin Yan,et al.  An Analysis of the Modified L1 Scheme for Time-Fractional Partial Differential Equations with Nonsmooth Data , 2018, SIAM J. Numer. Anal..

[14]  Jiwei Zhang,et al.  A Discrete Grönwall Inequality with Applications to Numerical Schemes for Subdiffusion Problems , 2018, SIAM J. Numer. Anal..

[15]  H. Piaggio Mathematical Analysis , 1955, Nature.

[16]  Chuanju Xu,et al.  Finite difference/spectral approximations for the time-fractional diffusion equation , 2007, J. Comput. Phys..

[17]  Eduardo Cuesta,et al.  Convolution quadrature time discretization of fractional diffusion-wave equations , 2006, Math. Comput..

[18]  Tao Zhou,et al.  On Energy Dissipation Theory and Numerical Stability for Time-Fractional Phase-Field Equations , 2018, SIAM J. Sci. Comput..

[19]  K ASSEM,et al.  Well-posedness of hp-version discontinuous Galerkin methods for fractional diffusion wave equations , 2014 .

[20]  William McLean,et al.  A second-order accurate numerical method for a fractional wave equation , 2006, Numerische Mathematik.

[21]  V. Thomée,et al.  Maximum-norm error analysis of a numerical solution via Laplace transformation and quadrature of a fractional-order evolution equation , 2010 .

[22]  Bangti Jin,et al.  Discrete maximal regularity of time-stepping schemes for fractional evolution equations , 2016, Numerische Mathematik.

[23]  Tao Wang,et al.  Analysis of a Time-Stepping Discontinuous Galerkin Method for Fractional Diffusion-Wave Equations with Nonsmooth Data , 2019, J. Sci. Comput..

[24]  Pin Lyu,et al.  A fast linearized finite difference method for the nonlinear multi-term time-fractional wave equation , 2019, Applied Numerical Mathematics.

[25]  Hu Chen,et al.  Error Analysis of a Second-Order Method on Fitted Meshes for a Time-Fractional Diffusion Problem , 2018, J. Sci. Comput..

[26]  Natalia Kopteva,et al.  Error analysis of the L1 method on graded and uniform meshes for a fractional-derivative problem in two and three dimensions , 2017, Math. Comput..

[27]  Zhi‐zhong Sun,et al.  A fully discrete difference scheme for a diffusion-wave system , 2006 .

[28]  Wei Zhang,et al.  A fractional diffusion-wave equation with non-local regularization for image denoising , 2014, Signal Process..

[29]  Francesco Mainardi FRACTIONAL DIFFUSIVE WAVES , 2001 .

[30]  R. Nigmatullin To the Theoretical Explanation of the “Universal Response” , 1984 .

[31]  Zhimin Zhang,et al.  Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations , 2015, 1511.03453.

[32]  Zhi-zhong Sun,et al.  Maximum norm error bounds of ADI and compact ADI methods for solving parabolic equations , 2010 .

[33]  Bangti Jin,et al.  An analysis of the L1 Scheme for the subdiffusion equation with nonsmooth data , 2015, 1501.00253.

[34]  M. T. Cicero FRACTIONAL CALCULUS AND WAVES IN LINEAR VISCOELASTICITY , 2012 .

[35]  Anatoly A. Alikhanov,et al.  A new difference scheme for the time fractional diffusion equation , 2014, J. Comput. Phys..

[36]  Thomas J. R. Hughes,et al.  Provably unconditionally stable, second-order time-accurate, mixed variational methods for phase-field models , 2011, J. Comput. Phys..