Parallel implementation of a VIScous Vorticity Equation (VISVE) method in 3-D laminar flow

Abstract This paper presents a newly developed parallel implementation of solving the 3–D vorticity equation to fully simulate the incompressible laminar flow in the Eulerian frame. This method is designed to solve 3–D problems with irregular wall boundaries in small and compact computational domains in general shapes efficiently. The curl form of vorticity equation is discretized using the Finite Volume Method (FVM) by applying Stokes' theorem, which automatically guarantees the divergence–free condition of vorticity field at all times. The vorticity preserving velocity field is recovered by an explicit scheme without solving any linear system, and this velocity field is reprojected onto a divergence–free space by solving only one scalar velocity–potential Poisson's equation. The vorticity boundary condition is satisfied by employing a vorticity creation scheme, that can handle arbitrary wall boundary shapes. Numerical results of the flow past a 3–D NACA0012 hydrofoil with one periodic direction, the flow past a sphere, and the flow past a 3–D rectangular wing are presented to validate the scheme.

[1]  G. Winckelmans,et al.  Vortex methods for high-resolution simulations of viscous flow past bluff bodies of general geometry , 2000 .

[2]  Georges-Henri Cottet,et al.  Particle methods for direct numerical simulations of three-dimensional wakes , 2002 .

[3]  T. J. Chung,et al.  Numerical solution of three-dimensional stream function vector components of vorticity transport equations , 1999 .

[4]  Richard E. Brown,et al.  Rotor Wake Modeling for Flight Dynamic Simulation of Helicopters , 2000 .

[5]  A. Chorin Numerical study of slightly viscous flow , 1973, Journal of Fluid Mechanics.

[6]  Richard E. Brown,et al.  Efficient High-Resolution Wake Modeling Using the Vorticity Transport Equation , 2004 .

[7]  J. N. Newman Distributions of sources and normal dipoles over a quadrilateral panel , 1986 .

[8]  Piet Hut,et al.  A hierarchical O(N log N) force-calculation algorithm , 1986, Nature.

[9]  Georges-Henri Cottet,et al.  Advances in direct numerical simulations of 3D wall-bounded flows by Vortex-in-Cell methods , 2004 .

[10]  P. Koumoutsakos,et al.  Boundary Conditions for Viscous Vortex Methods , 1994 .

[11]  Yu Chen,et al.  Vorticity vector-potential method for 3D viscous incompressible flows in time-dependent curvilinear coordinates , 2016, J. Comput. Phys..

[12]  H. Udaykumar,et al.  Sharp interface Cartesian grid method I: An easily implemented technique for 3D moving boundary computations , 2005 .

[13]  P. Swarztrauber,et al.  Efficient FORTRAN subprograms for the solution of elliptic partial differential equations. , 1975, SIGNUM.

[14]  Flavio Noca,et al.  Measuring instantaneous fluid dynamic forces on bodies, using only velocity fields and their derivatives , 1997 .

[15]  Jacques Magnaudet,et al.  Accelerated flows past a rigid sphere or a spherical bubble. Part 1. Steady straining flow , 1995, Journal of Fluid Mechanics.

[16]  D. L. Young,et al.  Numerical solution of three‐dimensional velocity–vorticity Navier–Stokes equations by finite difference method , 2005 .

[17]  R. Clift,et al.  Bubbles, Drops, and Particles , 1978 .

[18]  Kenji Ono,et al.  Automatically optimized core mapping to subdomains of domain decomposition method on multicore parallel environments , 2013 .

[19]  M. Hafez,et al.  Improved Numerical Simulations of Incompressible Flows Based on Viscous/Inviscid Interaction Procedures , 2007 .

[20]  A. Boschitsch,et al.  Innovative Grid-Based Vorticity–Velocity Solver for Analysis of Vorticity-Dominated Flows , 2015 .

[21]  G. Cottet,et al.  A particle method to solve the Navier-Stokes system , 1990 .

[22]  Generalized Riemann problem-based upwind scheme for the vorticity transport equations , 2016 .

[23]  William W. Willmarth,et al.  Some experimental results on sphere and disk drag , 1971 .

[24]  D. I. Meiron,et al.  Difficulties with three‐dimensional weak solutions for inviscid incompressible flow , 1986 .

[25]  K. Maki,et al.  A velocity decomposition approach for three-dimensional unsteady flow , 2017 .

[26]  K. Lindsay,et al.  A particle method and adaptive treecode for vortex sheet motion in three-dimensional flow , 2001 .

[27]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[28]  Grégoire Winckelmans,et al.  Combining the vortex-in-cell and parallel fast multipole methods for efficient domain decomposition simulations , 2008, J. Comput. Phys..

[29]  D. Sasaki,et al.  Parallel implementation of large-scale CFD data compression toward aeroacoustic analysis , 2013 .

[30]  Vahid Esfahanian,et al.  Coalesced computations of the incompressible Navier–Stokes equations over an airfoil using graphics processing units , 2013 .

[31]  A. Chorin Estimates of intermittency, spectra, and blow-up in developed turbulence , 1981 .

[32]  Petros Koumoutsakos,et al.  Vortex Methods: Theory and Practice , 2000 .

[33]  George Em Karniadakis,et al.  Direct and large-eddy simulations of axisymmetric wakes , 1993 .

[34]  E Weinan,et al.  Finite Difference Methods for 3D Viscous Incompressible Flows in the Vorticity-Vector Potential Formulation on Nonstaggered Grids , 1997 .

[35]  H. Aref,et al.  Linking of vortex rings , 1991, Nature.

[36]  L. Richardson,et al.  The Deferred Approach to the Limit. Part I. Single Lattice. Part II. Interpenetrating Lattices , 1927 .

[37]  Michael S. Warren,et al.  Vortex Methods for Direct Numerical Simulation of Three-Dimensional Bluff Body Flows , 2002 .

[38]  G. Cottet,et al.  Passive control of the flow around a hemisphere using porous media , 2017 .

[39]  M. Visbal Calculation of Viscous Transonic Flows about a Supercritical Airfoil. , 1986 .

[40]  Anya R. Jones,et al.  Leading-Edge Vortices: Mechanics and Modeling , 2019, Annual Review of Fluid Mechanics.

[41]  Kaveh Parseh,et al.  Preconditioned characteristic boundary conditions based on artificial compressibility method for solution of incompressible flows , 2017, J. Comput. Phys..

[42]  P. Gresho Incompressible Fluid Dynamics: Some Fundamental Formulation Issues , 1991 .

[43]  W. Roger Briley,et al.  A numerical study of laminar separation bubbles using the Navier-Stokes equations , 1971, Journal of Fluid Mechanics.

[44]  J. Sørensen,et al.  Vorticity–velocity formulation of the 3D Navier–Stokes equations in cylindrical co‐ordinates , 2003 .

[45]  A. Leonard Computing Three-Dimensional Incompressible Flows with Vortex Elements , 1985 .

[46]  M Israeli,et al.  Numerical Simulation of Viscous Incompressible Flows , 1974 .

[47]  R. A. James,et al.  The solution of Poisson''s equation for isolated source distributions , 1977 .

[48]  M. Darwish,et al.  Optimum decomposition of the anisotropic diffusion term , 2017 .

[49]  Omar M. Knio,et al.  Numerical study of a three-dimensional vortex method , 1990 .

[50]  Gregory H. Miller An iterative boundary potential method for the infinite domain Poisson problem with interior Dirichlet boundaries , 2008, J. Comput. Phys..

[51]  Petros Koumoutsakos,et al.  A Fourier-based elliptic solver for vortical flows with periodic and unbounded directions , 2010, J. Comput. Phys..

[52]  J. Christiansen Numerical Simulation of Hydrodynamics by the Method of Point Vortices , 1997 .

[53]  V. Heuveline,et al.  Parallel fluid flow control and optimisation with lattice Boltzmann methods and automatic differentiation , 2013 .

[54]  A. Thom,et al.  The flow past circular cylinders at low speeds , 1933 .

[55]  I. H. Abbott,et al.  Theory of Wing Sections: Including a Summary of Airfoil Data , 1959 .

[56]  Richard E. Brown,et al.  Simulation of wind turbine wake interaction using the vorticity transport model , 2010 .

[57]  Jiezhi Wu,et al.  Effective Vorticity-Velocity Formulations for Three-Dimensional Incompressible Viscous Flows , 1995 .

[58]  J. Gordon Leishman,et al.  Free-Vortex Filament Methods for the Analysis of Helicopter Rotor Wakes , 2002 .

[59]  T. Uchiyama,et al.  Direct numerical simulation of a turbulent channel flow by an improved vortex in cell method , 2013 .

[60]  Fernando T. Pinho,et al.  The flow of viscoelastic fluids past a cylinder : finite-volume high-resolution methods , 2001 .

[61]  John C. Adams,et al.  MUDPACK: Multigrid portable FORTRAN software for the efficient solution of linear elliptic partial d , 1989 .

[62]  S. Taneda Experimental Investigation of the Wake behind a Sphere at Low Reynolds Numbers , 1956 .

[63]  Grégoire Winckelmans,et al.  An immersed interface solver for the 2-D unbounded Poisson equation and its application to potential flow , 2014 .

[64]  K. Duraisamy,et al.  Multi-dimensional finite volume scheme for the vorticity transport equations , 2018 .

[65]  W. Tao,et al.  A physically consistent FVM interpolation scheme based on the discretized convection–diffusion equation , 2017 .

[66]  Alessandro Curioni,et al.  Billion vortex particle direct numerical simulations of aircraft wakes , 2008 .

[67]  Iraj Mortazavi,et al.  Vortex penalization method for bluff body flows , 2015 .

[68]  Jian‐Guo Liu,et al.  Vorticity Boundary Condition and Related Issues for Finite Difference Schemes , 1996 .

[69]  Petros Koumoutsakos,et al.  Remeshed smoothed particle hydrodynamics for the simulation of viscous and heat conducting flows , 2002 .

[70]  Raffaele Tripiccione,et al.  An optimized D2Q37 Lattice Boltzmann code on GP-GPUs , 2013 .

[71]  Taro Imamura,et al.  Flow Simulation Around an Airfoil by Lattice Boltzmann Method on Generalized Coordinates , 2005 .

[72]  Eckart Meiburg,et al.  Three-dimensional shear layers via vortex dynamics , 1988, Journal of Fluid Mechanics.

[73]  Georges-Henri Cottet,et al.  Blending Finite-Difference and Vortex Methods for Incompressible Flow Computations , 2000, SIAM J. Sci. Comput..

[74]  R. Mittal A Fourier–Chebyshev spectral collocation method for simulating flow past spheres and spheroids , 1999 .

[75]  Alexandre J. Chorin,et al.  Vortex sheet approximation of boundary layers , 1978 .

[76]  V. C. Patel,et al.  Flow past a sphere up to a Reynolds number of 300 , 1999, Journal of Fluid Mechanics.

[77]  P. Koumoutsakos,et al.  High-resolution simulations of the flow around an impulsively started cylinder using vortex methods , 1995, Journal of Fluid Mechanics.

[78]  Grégoire Winckelmans,et al.  Contributions to vortex particle methods for the computation of three-dimensional incompressible unsteady flows , 1993 .

[79]  Kazem Hejranfar,et al.  Implementation of a high-order compact finite-difference lattice Boltzmann method in generalized curvilinear coordinates , 2014, J. Comput. Phys..

[80]  S. Kinnas,et al.  A conservative viscous vorticity method for unsteady unidirectional and oscillatory flow past a circular cylinder , 2019, Ocean Engineering.

[81]  K. Lackner,et al.  Computation of ideal MHD equilibria , 1976 .

[82]  P. Degond,et al.  The weighted particle method for convection-diffusion equations , 1989 .

[83]  H. Fasel,et al.  A Compact-Difference Scheme for the Navier—Stokes Equations in Vorticity—Velocity Formulation , 2000 .

[84]  N. Phan-Thien,et al.  Upwinding with deferred correction (UPDC): an effective implementation of higher-order convection schemes for implicit finite volume methods , 2002 .

[85]  F. Noca,et al.  A COMPARISON OF METHODS FOR EVALUATING TIME-DEPENDENT FLUID DYNAMIC FORCES ON BODIES, USING ONLY VELOCITY FIELDS AND THEIR DERIVATIVES , 1999 .

[86]  Toshiyuki Hayase,et al.  A consistently formulated QUICK scheme for fast and stable convergence using finite-volume iterative calculation procedures , 1992 .

[87]  Philip Beran,et al.  Steady and unsteady solutions of the Navier-Stokes equations for flows about airfoils at low speeds , 1991 .

[88]  G. Amdhal,et al.  Validity of the single processor approach to achieving large scale computing capabilities , 1967, AFIPS '67 (Spring).

[89]  S. G. Rubin,et al.  A diagonally dominant second-order accurate implicit scheme , 1974 .

[90]  A Viscous Vorticity Method for Propeller Tip Flows and Leading Edge Vortex , 2015 .

[91]  Thomas Gillis,et al.  Fast immersed interface Poisson solver for 3D unbounded problems around arbitrary geometries , 2018, J. Comput. Phys..

[92]  S. Kinnas VIScous Vorticity Equation (VISVE) for Turbulent 2-D Flows with Variable Density and Viscosity , 2020, Journal of Marine Science and Engineering.

[93]  S. Mas-Gallic,et al.  Contribution à l'analyse numérique des méthodes particulaires , 1987 .

[94]  Maxim A. Olshanskii,et al.  Velocity-vorticity-helicity formulation and a solver for the Navier-Stokes equations , 2010, J. Comput. Phys..

[95]  A. Leonard Vortex methods for flow simulation , 1980 .