Predicting transcriptional outcomes of novel multigene perturbations with GEARS

[1]  Fabian J Theis,et al.  Predicting cellular responses to complex perturbations in high‐throughput screens , 2023, Molecular systems biology.

[2]  Samantha A. Morris,et al.  Dissecting cell identity via network inference and in silico gene perturbation , 2023, Nature.

[3]  Jason D. Buenrostro,et al.  A transcription factor atlas of directed differentiation , 2023, Cell.

[4]  M. Serrano,et al.  Hallmarks of aging: An expanding universe , 2022, Cell.

[5]  W. Lim The emerging era of cell engineering: Harnessing the modularity of cells to program complex biological function , 2022, Science.

[6]  Akanksha Jain,et al.  Inferring and perturbing cell fate regulomes in human brain organoids , 2022, Nature.

[7]  S. Horvath,et al.  In vivo partial reprogramming alters age-associated molecular changes during physiological aging in mice , 2022, Nature Aging.

[8]  Bianca J. Diaz,et al.  CRISPR in cancer biology and therapy , 2022, Nature Reviews Cancer.

[9]  Chun Jimmie Ye,et al.  CRISPR activation and interference screens decode stimulation responses in primary human T cells , 2022, Science.

[10]  Thomas M. Norman,et al.  Mapping information-rich genotype-phenotype landscapes with genome-scale Perturb-seq , 2021, Cell.

[11]  Luke A. Gilbert,et al.  A new era in functional genomics screens , 2021, Nature Reviews Genetics.

[12]  E. Ruppin,et al.  Synthetic lethality-mediated precision oncology via the tumor transcriptome , 2021, Cell.

[13]  A. Regev,et al.  Multimodal pooled Perturb-CITE-seq screens in patient models define mechanisms of cancer immune evasion , 2021, Nature Genetics.

[14]  Yuchen Yang,et al.  Direct cell reprogramming: approaches, mechanisms and progress , 2021, Nature Reviews Molecular Cell Biology.

[15]  Antonia A. Dominguez,et al.  CRISPR technologies for precise epigenome editing , 2021, Nature Cell Biology.

[16]  G. Church,et al.  A comprehensive library of human transcription factors for cell fate engineering , 2020, Nature Biotechnology.

[17]  H. Clevers,et al.  CRISPR-Cas Tools and Their Application in Genetic Engineering of Human Stem Cells and Organoids. , 2020, Cell stem cell.

[18]  C. Mummery,et al.  Organs-on-chips: into the next decade , 2020, Nature Reviews Drug Discovery.

[19]  Filip Roudnicky,et al.  Functional Genomics for Cancer Drug Target Discovery. , 2020, Cancer cell.

[20]  J. Doench,et al.  Design and analysis of CRISPR–Cas experiments , 2020, Nature Biotechnology.

[21]  Thomas M. Norman,et al.  Combinatorial single-cell CRISPR screens by direct guide RNA capture and targeted sequencing , 2020, Nature Biotechnology.

[22]  Thomas M. Norman,et al.  Titrating gene expression using libraries of systematically attenuated CRISPR guide RNAs , 2019, Nature Biotechnology.

[23]  T. K. Nguyen,et al.  CRISPR technologies for stem cell engineering and regenerative medicine. , 2019, Biotechnology advances.

[24]  Thomas M. Norman,et al.  Exploring genetic interaction manifolds constructed from rich single-cell phenotypes , 2019, Science.

[25]  Mohammad Lotfollahi,et al.  scGen predicts single-cell perturbation responses , 2019, Nature Methods.

[26]  Fabian J Theis,et al.  Deep learning: new computational modelling techniques for genomics , 2019, Nature Reviews Genetics.

[27]  T. M. Murali,et al.  Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic data , 2019, Nature Methods.

[28]  J. Moffat,et al.  Global Genetic Networks and the Genotype-to-Phenotype Relationship , 2019, Cell.

[29]  Michael S. Fernandopulle,et al.  CRISPR Interference-Based Platform for Multimodal Genetic Screens in Human iPSC-Derived Neurons , 2019, Neuron.

[30]  A. Brunet,et al.  Turning back time with emerging rejuvenation strategies , 2019, Nature Cell Biology.

[31]  Damian Szklarczyk,et al.  STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets , 2018, Nucleic Acids Res..

[32]  Michael I. Jordan,et al.  Deep Generative Modeling for Single-cell Transcriptomics , 2018, Nature Methods.

[33]  Neal K. Bennett,et al.  Mapping the Genetic Landscape of Human Cells , 2018, Cell.

[34]  Thawfeek M. Varusai,et al.  The Reactome Pathway Knowledgebase , 2017, Nucleic Acids Res..

[35]  P. Hieter,et al.  Synthetic lethality and cancer , 2017, Nature Reviews Genetics.

[36]  J. Aerts,et al.  SCENIC: Single-cell regulatory network inference and clustering , 2017, Nature Methods.

[37]  I. Amit,et al.  Dissecting Immune Circuits by Linking CRISPR-Pooled Screens with Single-Cell RNA-Seq , 2016, Cell.

[38]  Thomas M. Norman,et al.  A Multiplexed Single-Cell CRISPR Screening Platform Enables Systematic Dissection of the Unfolded Protein Response , 2016, Cell.

[39]  Thomas M. Norman,et al.  Perturb-Seq: Dissecting Molecular Circuits with Scalable Single-Cell RNA Profiling of Pooled Genetic Screens , 2016, Cell.

[40]  Jeffery L. Painter,et al.  The support of human genetic evidence for approved drug indications , 2015, Nature Genetics.

[41]  Mariano J. Alvarez,et al.  Cross-species regulatory network analysis identifies a synergistic interaction between FOXM1 and CENPF that drives prostate cancer malignancy. , 2014, Cancer cell.

[42]  Yoshihiro Yamanishi,et al.  KEGG for linking genomes to life and the environment , 2007, Nucleic Acids Res..

[43]  K. Sachs,et al.  Causal Protein-Signaling Networks Derived from Multiparameter Single-Cell Data , 2005, Science.

[44]  H. Kitano Systems Biology: A Brief Overview , 2002, Science.

[45]  Michal Linial,et al.  Using Bayesian networks to analyze expression data , 2000, RECOMB '00.

[46]  B Marshall,et al.  Gene Ontology Consortium: The Gene Ontology (GO) database and informatics resource , 2004, Nucleic Acids Res..