A multi-population hybrid biased random key genetic algorithm for hop-constrained trees in nonlinear cost flow networks

Genetic algorithms and other evolutionary algorithms have been successfully applied to solve constrained minimum spanning tree problems in a variety of communication network design problems. In this paper, we enlarge the application of these types of algorithms by presenting a multi-population hybrid genetic algorithm to another communication design problem. This new problem is modeled through a hop-constrained minimum spanning tree also exhibiting the characteristic of flows. All nodes, except for the root node, have a nonnegative flow requirement. In addition to the fixed charge costs, nonlinear flow dependent costs are also considered. This problem is an extension of the well know NP-hard hop-constrained Minimum Spanning Tree problem and we have termed it hop-constrained minimum cost flow spanning tree problem. The efficiency and effectiveness of the proposed method can be seen from the computational results reported.

[1]  Dalila B. M. M. Fontes,et al.  Optimal Hop-Constrained Trees for Nonlinear Cost Flow Networks , 2010, INFOR Inf. Syst. Oper. Res..

[2]  Roberto Montemanni,et al.  A branch and bound algorithm for the robust spanning tree problem with interval data , 2002, Eur. J. Oper. Res..

[3]  L. Gouveia Multicommodity flow models for spanning trees with hop constraints , 1996 .

[4]  José Fernando Gonçalves,et al.  A genetic algorithm for lot sizing and scheduling under capacity constraints and allowing backorders , 2011 .

[5]  Deborah Estrin,et al.  An architecture for wide-area multicast routing , 1994, SIGCOMM.

[6]  Michel Gendreau,et al.  A heuristic method for non-homogeneous redundancy optimization of series-parallel multi-state systems , 2011, J. Heuristics.

[7]  R. Boorstyn,et al.  Large-Scale Network Topological Optimization , 1977, IEEE Trans. Commun..

[8]  Mitsuo Gen,et al.  Network design techniques using adapted genetic algorithms , 2001 .

[9]  John E. Beasley,et al.  OR-Library: Distributing Test Problems by Electronic Mail , 1990 .

[10]  Bryant A. Julstrom,et al.  Edge sets: an effective evolutionary coding of spanning trees , 2003, IEEE Trans. Evol. Comput..

[11]  Dushyant Sharma,et al.  Multi-exchange neighborhood structures for the capacitated minimum spanning tree problem , 2001, Math. Program..

[12]  G. Gallo,et al.  Adjacent extreme flows and application to min concave cost flow problems , 1979, Networks.

[13]  Pedro Martins,et al.  The capacitated minimum spanning tree problem: revisiting hop-indexed formulations , 2005, Comput. Oper. Res..

[14]  Mauricio G. C. Resende,et al.  Biased random-key genetic algorithms for combinatorial optimization , 2011, J. Heuristics.

[15]  Susan L. Albin,et al.  The design of centralized networks with reliability and availability constraints , 1988, Comput. Oper. Res..

[16]  Mauricio G. C. Resende,et al.  A parallel multi-population biased random-key genetic algorithm for a container loading problem , 2012, Comput. Oper. Res..

[17]  José Fernando Gonçalves,et al.  A Hybrid Genetic Algorithm for Assembly Line Balancing , 2002, J. Heuristics.

[18]  José Fernando Gonçalves,et al.  A hybrid genetic algorithm-heuristic for a two-dimensional orthogonal packing problem , 2007, Eur. J. Oper. Res..

[19]  Stephen E. Deering,et al.  Multicast routing in datagram internetworks and extended LANs , 1990, TOCS.

[20]  Nicos Christofides,et al.  Upper bounds for single‐source uncapacitated concave minimum‐cost network flow problems , 2003, Networks.

[21]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[22]  Roberto Montemanni,et al.  A Benders decomposition approach for the robust spanning tree problem with interval data , 2006, Eur. J. Oper. Res..

[23]  Yong Zeng,et al.  A new genetic algorithm with local search method for degree-constrained minimum spanning tree problem , 2003, Proceedings Fifth International Conference on Computational Intelligence and Multimedia Applications. ICCIMA 2003.

[24]  S. K. Park,et al.  Random number generators: good ones are hard to find , 1988, CACM.

[25]  Nicos Christofides,et al.  A Branch-and-Bound Algorithm for Concave Network Flow Problems , 2006, J. Glob. Optim..

[26]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[27]  Mauricio G. C. Resende,et al.  A biased random-key genetic algorithm with forward-backward improvement for the resource constrained project scheduling problem , 2011, J. Heuristics.

[28]  George C. Polyzos,et al.  Multicast routing for multimedia communication , 1993, TNET.

[29]  Estefane G. M. de Lacerda,et al.  A genetic algorithm for the capacitated minimum spanning tree problem , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[30]  Mauricio G. C. Resende,et al.  An evolutionary algorithm for manufacturing cell formation , 2004, Comput. Ind. Eng..

[31]  Mauricio G. C. Resende,et al.  Discrete Optimization A hybrid genetic algorithm for the job shop scheduling problem , 2005 .

[32]  Mauricio G. C. Resende,et al.  A parallel multi-population genetic algorithm for a constrained two-dimensional orthogonal packing problem , 2011, J. Comb. Optim..

[33]  Fu-Ying Guo,et al.  A new genetic algorithm for the degree-constrained minimum spanning tree problem , 2005, Proceedings of 2005 IEEE International Workshop on VLSI Design and Video Technology, 2005..

[34]  David K. Smith,et al.  The Dandelion Code: A New Coding of Spanning Trees for Genetic Algorithms , 2007, IEEE Transactions on Evolutionary Computation.

[35]  Luís Gouveia,et al.  Using the Miller-Tucker-Zemlin constraints to formulate a minimal spanning tree problem with hop constraints , 1995, Comput. Oper. Res..

[36]  Michael A. Henning,et al.  Which trees have a differentiating-paired dominating set? , 2011, J. Comb. Optim..

[37]  Luís Gouveia,et al.  On Formulations and Methods for the Hop-Constrained Minimum Spanning Tree Problem , 2006, Handbook of Optimization in Telecommunications.

[38]  Panos M. Pardalos,et al.  Adaptive dynamic cost updating procedure for solving fixed charge network flow problems , 2008, Comput. Optim. Appl..

[39]  Mitsuo Gen,et al.  Recent network design techniques using evolutionary algorithms , 2005 .

[40]  Panos M. Pardalos,et al.  Bilinear modeling solution approach for fixed charge network flow problems , 2009, Optim. Lett..

[41]  Nicos Christofides,et al.  A dynamic programming approach for solving single-source uncapacitated concave minimum cost network flow problems , 2006, Eur. J. Oper. Res..

[42]  Rakesh Kawatra,et al.  A hop constrained min-sum arborescence with outage costs , 2003, 36th Annual Hawaii International Conference on System Sciences, 2003. Proceedings of the.

[43]  Marc Lelarge,et al.  Packet reordering in networks with heavy-tailed delays , 2008, Math. Methods Oper. Res..

[44]  Thomas H. Cormen,et al.  Introduction to algorithms [2nd ed.] , 2001 .

[45]  Mohammed Atiquzzaman,et al.  Least cost heuristic for the delay-constrained capacitated minimum spanning tree problem , 2005, Comput. Commun..

[46]  Mauricio G. C. Resende,et al.  A genetic algorithm for the resource constrained multi-project scheduling problem , 2008, Eur. J. Oper. Res..

[47]  José Fernando Gonçalves,et al.  Heuristic solutions for general concave minimum cost network flow problems , 2007, Networks.

[48]  Luís Gouveia,et al.  A new Lagrangean relaxation approach for the hop-constrained minimum spanning tree problem , 2001, Eur. J. Oper. Res..