TiO2 based photocatalytic membranes: A review

Photocatalytic membranes have shown great potential for use in energy-efficient water purification and wastewater treatment since they combine the physical separation of membrane filtration, and the organic degradation and anti-bacterial property achieved by photocatalysis in a single unit. Titanium dioxide (TiO2) is the most commonly used material for fabrication of photocatalytic membranes due to its low cost, non-toxicity and high chemical stability. This paper reviews recent progress in the TiO2 photocatalytic membranes for wastewater treatment and water purification with an emphasis on the type of membranes, membrane fabrication and characterization, and applications in disinfection and pollutant removal.

[1]  Q. Nguyen,et al.  Elaboration and study of poly(vinylidene fluoride)–anatase TiO2 composite membranes in photocatalytic degradation of dyes , 2009 .

[2]  Akira Fujishima,et al.  Highly ordered TiO2 nanotube arrays with controllable length for photoelectrocatalytic degradation of phenol , 2008 .

[3]  H. Sarpoolaky,et al.  Sol–gel preparation of titania multilayer membrane for photocatalytic applications , 2009 .

[4]  J. Nan,et al.  Facile microwave synthesis of novel hierarchical Bi24O31Br10 nanoflakes with excellent visible light photocatalytic performance for the degradation of tetracycline hydrochloride , 2013 .

[5]  Yi-Feng Lin,et al.  Rapid atmospheric plasma spray coating preparation and photocatalytic activity of macroporous titania nanocrystalline membranes , 2012 .

[6]  Photocatalytic membrane for removal of organic contaminants during ultra-purification of water , 2004 .

[7]  S. Mozia Photocatalytic membrane reactors (PMRs) in water and wastewater treatment. A review , 2010 .

[8]  Liping Zhu,et al.  Fabrication and characterization of a novel TiO2 nanoparticle self-assembly membrane with improved fouling resistance , 2009 .

[9]  Liyuan Li,et al.  On the photocatalytic properties of elongated TiO2 nanoparticles for phenol degradation and Cr(VI) reduction. , 2010, Journal of hazardous materials.

[10]  B. Liu,et al.  Photocatalytic degradation of organic dyes under solar light irradiation combined with Er3+:YAlO3/Fe- and Co-doped TiO2 coated composites , 2010 .

[11]  Ta-Chin Wei,et al.  Evaluation of the antifouling and photocatalytic properties of poly(vinylidene fluoride) plasma-grafted poly(acrylic acid) membrane with self-assembled TiO2. , 2012, Journal of hazardous materials.

[12]  S. You,et al.  Study the self cleaning, antibacterial and photocatalytic properties of TiO2 entrapped PVDF membranes. , 2009, Journal of hazardous materials.

[13]  Dionysios D. Dionysiou,et al.  Nanocrystalline TiO2 Photocatalytic Membranes with a Hierarchical Mesoporous Multilayer Structure: Synthesis, Characterization, and Multifunction , 2006 .

[14]  P. Albouy,et al.  A Simple Route for Low-Temperature Synthesis of Mesoporous and Nanocrystalline Anatase Thin Films , 2003 .

[15]  S. Yun,et al.  Kinetic enhancement in photocatalytic oxidation of organic compounds by WO3 in the presence of Fenton-like reagent , 2013 .

[16]  A. Kulik,et al.  Photodynamics and surface characterization of TiO2 and Fe2O3 photocatalysts immobilized on modified polyethylene films , 2001 .

[17]  P. Bruzzi,et al.  Mathematical modelling of photomineralization of phenols in aqueous solution, by photocatalytic membranes immobilizing titanium dioxide☆ , 1996 .

[18]  Rong Wang,et al.  Carbon-sensitized and nitrogen-doped TiO2 for photocatalytic degradation of sulfanilamide under visible-light irradiation. , 2011, Water research.

[19]  Shengyang Tao,et al.  Hierarchically porous silica as an efficient catalyst carrier for high performance vis-light assisted Fenton degradation , 2013 .

[20]  Pei Liu,et al.  Preparation of TiO2 nanotubes coated on polyurethane and study of their photocatalytic activity , 2012 .

[21]  James O. Leckie,et al.  TiO2 nanowire membrane for concurrent filtration and photocatalytic oxidation of humic acid in water , 2008 .

[22]  Andrei Ghicov,et al.  Self-organized, free-standing TiO2 nanotube membrane for flow-through photocatalytic applications. , 2007, Nano letters.

[23]  L. Palmisano,et al.  Photocatalytic degradation of dyes by using a membrane reactor , 2004 .

[24]  S. Kuwabata,et al.  Preparation and Properties of Size-Quantized TiO2 Particles Immobilized in Poly(vinylpyrrolidinone) Gel Films , 1995 .

[25]  J. Chung,et al.  Fabrication and photocatalytic activity of a novel nanostructured TiO2 metal membrane , 2011 .

[26]  A. Rahimpour,et al.  Coupling TiO2 nanoparticles with UV irradiation for modification of polyethersulfone ultrafiltration membranes , 2008 .

[27]  Kang Wang,et al.  Synthesis, characterization and enhanced photocatalytic performance of Ag2S-coupled ZnO/ZnS core/shell nanorods , 2013 .

[28]  R. W. Matthews Photooxidative degradation of coloured organics in water using supported catalysts. TiO2 on sand , 1991 .

[29]  B. Wang,et al.  A facile and low-cost synthesis of granulated blast furnace slag-based cementitious material coupled with Fe2O3 catalyst for treatment of dye wastewater , 2013 .

[30]  M. Jahanshahi,et al.  TiO2 entrapped nano-composite PVDF/SPES membranes: Preparation, characterization, antifouling and antibacterial properties , 2011 .

[31]  Fenglin Yang,et al.  Stable photocatalytic activity of immobilized Fe0/TiO2/ACF on composite membrane in degradation of 2,4-dichlorophenol , 2009 .

[32]  A. Rahimpour,et al.  Formation of appropriate sites on nanofiltration membrane surface for binding TiO2 photo-catalyst: Performance, characterization and fouling-resistant capability , 2009 .

[33]  Li-ping Zhu,et al.  Iron-doped TiO2 nanotubes with high photocatalytic activity under visible light synthesized by an ultrasonic-assisted sol-hydrothermal method , 2013 .

[34]  Xudong Cao,et al.  Hydrothermal synthesis of WO3 nanoplates as highly sensitive cyclohexene sensor and high-efficiency MB photocatalyst , 2013 .

[35]  L. Montanarella,et al.  Pilot-plant-scale photodegradation of phenol in aqueous solution by photocatalytic membranes immobilizing titanium dioxide (PHOTOPERM® process)☆ , 1995 .

[36]  B. Tryba Immobilization of TiO2 and Fe-C-TiO2 photocatalysts on the cotton material for application in a flow photocatalytic reactor for decomposition of phenol in water. , 2008, Journal of hazardous materials.

[37]  Shi-feng Li,et al.  Polypropylene membrane surface modification by RAFT grafting polymerization and TiO2 photocatalysts immobilization for phenol decomposition in a photocatalytic membrane reactor , 2011 .

[38]  M. Gong,et al.  Photocatalytic degradation of gaseous benzene over TiO2/Sr2CeO4: kinetic model and degradation mechanisms. , 2007, Journal of hazardous materials.

[39]  Tai Hyun Park,et al.  Design of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane as an approach to solve biofouling problem , 2003 .

[40]  Fenglin Yang,et al.  Photocatalytic degradation of 2,4,6-tribromophenol over Fe-doped ZnIn2S4: Stable activity and enhanced debromination , 2013 .

[41]  T. Bredow,et al.  SINDO1 study of photocatalytic formation and reactions of OH radicals at anatase particles , 1995 .

[42]  S. Bhatia,et al.  Performance of photocatalytic reactors using immobilized TiO2 film for the degradation of phenol and methylene blue dye present in water stream. , 2004, Chemosphere.

[43]  R. Thiruvenkatachari,et al.  Application of Slurry Type Photocatalytic Oxidation‐Submerged Hollow Fiber Microfiltration Hybrid System for the Degradation of Bisphenol A (BPA) , 2005 .

[44]  L. Montanarella,et al.  Laboratory-scale photodegradation of phenol in aqueous solution by photocatalytic membranes immobilizing titanium dioxides , 1995 .

[45]  C. Guizard,et al.  Mesoporous anatase coatings for coupling membrane separation and photocatalyzed reactions , 2005 .

[46]  Hongchen Song,et al.  Natural organic matter removal and flux decline with PEG–TiO2-doped PVDF membranes by integration of ultrafiltration with photocatalysis , 2012 .

[47]  Y. Ku,et al.  Photocatalytic degradation of Acid Red 4 using a titanium dioxide membrane supported on a porous ceramic tube. , 2008, Water research.

[48]  Sang Bum Kim,et al.  Photocatalytic degradation of volatile organic compounds at the gas-solid interface of a TiO2 photocatalyst. , 2002, Chemosphere.

[49]  R. Bauer,et al.  New Reactor Design for Photocatalytic Wastewater Treatment with TiO2 Immobilized on Fused-Silica Glass Fibers: Photomineralization of 4-Chlorophenol. , 1994, Environmental science & technology.

[50]  A. Ayral,et al.  Robust synthesis and performance of a titania-based ultrafiltration membrane with photocatalytic properties , 2010 .

[51]  Darren D. Sun,et al.  Concurrent filtration and solar photocatalytic disinfection/degradation using high-performance Ag/TiO2 nanofiber membrane. , 2012, Water research.

[52]  Mingshu Yang,et al.  Sol–gel immobilization of SiO2/TiO2 on hydrophobic clay and its removal of methyl orange from water , 2008 .

[53]  H. Sarpoolaky,et al.  The effect of silver doping on photocatalytic properties of titania multilayer membranes , 2010 .

[54]  H. Warnecke,et al.  Multifunctional System for Treatment of Wastewaters from Adhesive‐Producing Industries: Separation of Solids and Oxidation of Dissolved Pollutants Using Doted Microfiltration Membranes , 2001 .

[55]  F. Morazzoni,et al.  Photocatalytic membrane modules for drinking water purification in domestic and community appliances , 2005 .

[56]  Huimin Zhao,et al.  Fabrication of photocatalytic membrane and evaluation its efficiency in removal of organic pollutants from water , 2006 .

[57]  M. Bonardi,et al.  Photobleaching and photomineralization of azobenzene and substituted azobenzenes in aqueous solution by photocatalytic membranes immobilizing titanium dioxide , 1997 .

[58]  V. S. Smitha,et al.  Mesoporous gadolinium doped titania photocatalyst through an aqueous sol–gel method , 2010 .

[59]  Huimin Zhao,et al.  Zirconia and titania composite membranes for liquid phase separation: preparation and characterization , 2006 .

[60]  R. Bianchi,et al.  Solar energy driven photocatalytic membrane modules for water reuse in agricultural and food industries. Pre-industrial experience using s-triazines as model molecules † , 2005 .

[61]  A. Livingston,et al.  Impact of TiO2 nanoparticles on morphology and performance of crosslinked polyimide organic solvent nanofiltration (OSN) membranes , 2009 .

[62]  Peng Wang,et al.  The influence of nano-sized TiO2 fillers on the morphologies and properties of PSF UF membrane , 2007 .

[63]  D. Ollis Integrating Photocatalysis and Membrane Technologies for Water Treatment , 2003, Annals of the New York Academy of Sciences.

[64]  M. Gong,et al.  Photocatalytic degradation of gaseous benzene over TiO2/Sr2CeO4: preparation and photocatalytic behavior of TiO2/Sr2CeO4. , 2007, Journal of hazardous materials.

[65]  M. Seery,et al.  Effect of N-doping on the photocatalytic activity of sol-gel TiO2. , 2012, Journal of hazardous materials.

[66]  L. Devi,et al.  Enhanced photocatalytic performance of Hemin (chloro(protoporhyinato)iron(III)) anchored TiO2 photocatalyst for methyl orange degradation: A surface modification method , 2013 .

[67]  H. Sarpoolaky,et al.  Titania ultrafiltration membrane: Preparation, characterization and photocatalytic activity , 2009 .

[68]  M. Servos,et al.  Hydrothermal growth of free standing TiO2 nanowire membranes for photocatalytic degradation of pharmaceuticals. , 2011, Journal of hazardous materials.

[69]  Jingjing Xu,et al.  Synthesis of Gd-doped TiO2 nanoparticles under mild condition and their photocatalytic activity , 2009 .

[70]  Byong-Taek Lee,et al.  Formation of TiO2 nano fibers on a micro-channeled Al2O3–ZrO2/TiO2 porous composite membrane for photocatalytic filtration , 2012 .

[71]  Elias Stathatos,et al.  Sol–gel preparation of mesoporous photocatalytic TiO2 films and TiO2/Al2O3 composite membranes for environmental applications , 2006 .

[72]  J. Jurng,et al.  Photocatalytic degradation of methylene blue by a combination of TiO2-anatase and coconut shell activated carbon , 2012 .

[73]  Yaobin Zhang,et al.  Ag–TiO2/HAP/Al2O3 bioceramic composite membrane: Fabrication, characterization and bactericidal activity , 2009 .

[74]  Shun-cheng Lee,et al.  Enhancement effect of TiO2 immobilized on activated carbon filter for the photodegradation of pollutants at typical indoor air level , 2003 .

[75]  A. Niaei,et al.  Immobilization of TiO2 Nanopowder on Glass Beads for the Photocatalytic Decolorization of an Azo Dye C.I. Direct Red 23 , 2005, Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering.

[76]  O. M. Kut,et al.  TiO2-Assisted Degradation of Environmentally Relevant Organic Compounds in Wastewater Using a Novel Fluidized Bed Photoreactor , 1996 .

[77]  L. Cheng,et al.  Photocatalytic oxidation using a new catalyst--TiO2 microsphere--for water and wastewater treatment. , 2003, Environmental science & technology.

[78]  Polycarpos Falaras,et al.  Very efficient composite titania membranes in hybrid ultrafiltration/photocatalysis water treatment processes , 2012 .

[79]  Weirong Zhao,et al.  Photocatalytic oxidation of nitrogen oxides using TiO2 loading on woven glass fabric. , 2007, Chemosphere.

[80]  Daojie Wang,et al.  Photocatalytic degradation of organic contaminants by TiO2/sepiolite composites prepared at low temperature , 2011 .

[81]  J. Leckie,et al.  Grafted multifunctional titanium dioxide nanotube membrane: Separation and photodegradation of aquatic pollutant , 2008 .

[82]  Shiwei Lin,et al.  Fabrication and photocatalytic properties of free-standing TiO2 nanotube membranes with through-hole morphology , 2012 .

[83]  G. Romanos,et al.  Double-side active TiO2-modified nanofiltration membranes in continuous flow photocatalytic reactors for effective water purification. , 2012, Journal of hazardous materials.

[84]  Elias Stathatos,et al.  Photocatalytic TiO2 films and membranes for the development of efficient wastewater treatment and reuse systems , 2007 .

[85]  Niyaz Mohammad Mahmoodi,et al.  Photocatalytic degradation of triazinic ring-containing azo dye (Reactive Red 198) by using immobilized TiO2 photoreactor: bench scale study. , 2006, Journal of hazardous materials.

[86]  K. Cen,et al.  Photocatalytic decomposition on nano-TiO₂: destruction of chloroaromatic compounds. , 2011, Chemosphere.

[87]  Marina Bährle-Rapp Direct Red 23 , 2007 .

[88]  Fenglin Yang,et al.  A photo-catalysis and rotating nano-CaCO3 dynamic membrane system with Fe-ZnIn2S4 efficiently removes halogenated compounds in water , 2013 .

[89]  B. Sreedhar,et al.  Enhanced photocatalytic activity of multi-doped TiO2 for the degradation of methyl orange , 2012 .

[90]  Xingdong Wang,et al.  Methyl orange removal by combined visible-light photocatalysis and membrane distillation , 2013 .

[91]  Ying Yu,et al.  Highly efficient photocatalytic removal of sodium pentachlorophenate with Bi3O4Br under visible light , 2013 .

[92]  S. Agarwal,et al.  Adsorptional photocatalytic degradation of methylene blue onto pectin-CuS nanocomposite under solar light. , 2012, Journal of hazardous materials.

[93]  A. Dana,et al.  Characterizations and photocatalytic activity comparisons of N-doped nc-TiO2 depending on synthetic conditions and structural differences of amine sources , 2011 .

[94]  Huimin Zhao,et al.  The removal of sodium dodecylbenzene sulfonate surfactant from water using silica/titania nanorods/nanotubes composite membrane with photocatalytic capability , 2006 .