Electron transport in extended carbon-nanotube/metal contacts: Ab initio based Green function method

We have developed a new method that is able to predict the electrical properties of the source and drain contacts in realistic carbon nanotube field effect transistors (CNTFETs). It is based on large-scale ab initio calculations combined with a Green function approach. For the first time, both internal and external parts of a realistic CNT-metal contact are taken into account at the ab initio level. We have developed the procedure allowing direct calculation of the self-energy for an extended contact. Within the method, it is possible to calculate the transmission coefficient through a contact of both finite and infinite length; the local density of states can be determined in both free and embedded CNT segments. We found perfect agreement with the experimental data for Pd and Al contacts. We have explained why CNTFETs with Pd electrodes are p-type FETs with ohmic contacts, which can carry current close to the ballistic limit (provided contact length is large enough), whereas in CNT-Al contacts transmission is suppressed to a significant extent, especially for holes.

[1]  Chongwu Zhou,et al.  Metal contact engineering and registration-free fabrication of complementary metal-oxide semiconductor integrated circuits using aligned carbon nanotubes. , 2011, ACS nano.

[2]  Qian Wang,et al.  Advancements in complementary carbon nanotube field-effect transistors , 2003, IEEE International Electron Devices Meeting 2003.

[3]  Mark A. Ratner,et al.  First-principles based matrix Green's function approach to molecular electronic devices: general formalism , 2002 .

[4]  Chong-yu Wang,et al.  First-principles study of contact between Ti surface and semiconducting carbon nanotube , 2007 .

[5]  Michele Parrinello,et al.  Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach , 2005, Comput. Phys. Commun..

[6]  S. Goedecker,et al.  Relativistic separable dual-space Gaussian pseudopotentials from H to Rn , 1998, cond-mat/9803286.

[7]  J. Schuster,et al.  Metallic carbon nanotubes with metal contacts: electronic structure and transport , 2014, Nanotechnology.

[8]  M. Lundstrom,et al.  Ballistic carbon nanotube field-effect transistors , 2003, Nature.

[9]  Quantification of curvature effects in boron and carbon nanotubes: Band structures and ballistic current , 2013 .

[10]  Kyeongjae Cho,et al.  Ab initio study of Schottky barriers at metal-nanotube contacts , 2004 .

[11]  Wilfried Haensch,et al.  Defining and overcoming the contact resistance challenge in scaled carbon nanotube transistors , 2014, 72nd Device Research Conference.

[12]  Davood Shahrjerdi,et al.  High-performance air-stable n-type carbon nanotube transistors with erbium contacts. , 2013, ACS nano.

[13]  First-principles analysis of molecular conduction using quantum chemistry software , 2002, cond-mat/0206551.

[14]  R. T. Tung Formation of an electric dipole at metal-semiconductor interfaces , 2001 .

[15]  Yong‐Hoon Kim,et al.  Anomalous length scaling of carbon nanotube-metal contact resistance: An ab initio study , 2012 .

[16]  Eleanor E. B. Campbell,et al.  Schottky barriers in carbon nanotube-metal contacts , 2011 .

[17]  J. Palacios,et al.  Metal contacts in carbon nanotube field-effect transistors: Beyond the Schottky barrier paradigm , 2007, 0705.1328.

[18]  R Martel,et al.  Carbon nanotubes as schottky barrier transistors. , 2002, Physical review letters.

[19]  G. Cuniberti,et al.  Contact dependence of carrier injection in carbon nanotubes: an ab initio study. , 2005, Physical review letters.

[20]  W. Haensch,et al.  Carbon nanotube complementary wrap-gate transistors. , 2013, Nano letters.

[21]  Yan Li,et al.  Doping-Free Fabrication of Carbon Nanotube Based Ballistic CMOS Devices and Circuits , 2007 .

[22]  Zhihong Chen,et al.  Length scaling of carbon nanotube transistors. , 2010, Nature nanotechnology.

[23]  C. Chan,et al.  Work function of single-walled and multiwalled carbon nanotubes: First-principles study , 2007 .

[24]  Teter,et al.  Separable dual-space Gaussian pseudopotentials. , 1996, Physical review. B, Condensed matter.

[25]  K. Jacobsen,et al.  Graphene on metals: A van der Waals density functional study , 2009, 0912.3078.

[26]  Hongjie Dai,et al.  Metal coating on suspended carbon nanotubes and its implication to metal–tube interaction , 2000 .

[27]  S. Roche,et al.  Multiscale simulation of carbon nanotube devices , 2009 .

[28]  Daniel S. Fisher,et al.  Relation between conductivity and transmission matrix , 1981 .

[29]  Gerhard Klimeck,et al.  Single and multiband modeling of quantum electron transport through layered semiconductor devices , 1997 .

[30]  Mark S. Lundstrom,et al.  Sub-10 nm carbon nanotube transistor , 2011, 2011 International Electron Devices Meeting.

[31]  J. Brink,et al.  Doping graphene with metal contacts. , 2008, Physical review letters.

[32]  Yan Li,et al.  Y-contacted high-performance n-type single-walled carbon nanotube field-effect transistors: scaling and comparison with Sc-contacted devices. , 2009, Nano letters.

[33]  M. Sancho,et al.  Highly convergent schemes for the calculation of bulk and surface Green functions , 1985 .

[34]  P. Avouris,et al.  Externally Assembled Gate-All-Around Carbon Nanotube Field-Effect Transistor , 2008, IEEE Electron Device Letters.

[35]  J. Knoch,et al.  Tunneling phenomena in carbon nanotube field‐effect transistors , 2008 .

[36]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[37]  Gianaurelio Cuniberti,et al.  Modeling extended contacts for nanotube and graphene devices , 2007, 0711.1088.

[38]  William I. Milne,et al.  Carbon nanotube Schottky diode and directionally dependent field-effect transistor using asymmetrical contacts , 2005 .

[39]  S. Hou,et al.  Schottky barrier formation at metal electrodes and semiconducting carbon nanotubes , 2009 .

[40]  E. Kaxiras,et al.  The nature of contact between Pd leads and semiconducting carbon nanotubes. , 2006, Nano letters.