When does evolution optimize

Aim: To elucidate the role of the eco-evolutionary feedback loop in determining evolutionarily stable life histories, with particular reference to the methodological status of the optimization procedures of classical evolutionary ecology. Conclusion: A pure optimization approach holds water only when the eco-evolutionary feedbacks are of a particularly simple kind.

[1]  Peter D. Taylor,et al.  Evolutionary stability in one-parameter models under weak selection , 1989 .

[2]  Marino Gatto,et al.  Lyapunov exponents and the mathematics of invasion in oscillatory or chaotic populations , 1995 .

[3]  DAVID TITMAN,et al.  Ecological Competition Between Algae: Experimental Confirmation of Resource-Based Competition Theory , 1976, Science.

[4]  William Gurney,et al.  Fluctuation periodicity, generation separation, and the expression of larval competition , 1985 .

[5]  Veijo Kaitala,et al.  Evolution of mixed maturation strategies in semelparous life histories: the crucial role of dimensionality of feedback environment , 1996 .

[6]  D. Tilman Resource competition and community structure. , 1983, Monographs in population biology.

[7]  Brian Charlesworth,et al.  Selection in Density‐Regulated Populations , 1971 .

[8]  D. Roff The evolution of life histories : theory and analysis , 1992 .

[9]  P. Jagers,et al.  The Growth and Stabilization of Populations , 1991 .

[10]  M. Kimura Change of gene frequencies by natural selection under population number regulation. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[11]  P D Taylor,et al.  Inclusive fitness models with two sexes. , 1988, Theoretical population biology.

[12]  A. M. de Roos,et al.  The role of physiologically structured population models within a general individual-based modelling perspective , 1992 .

[13]  Life History, Symmetry and Evolution , 1993, The Quarterly Review of Biology.

[14]  H. Matsuda Evolutionarily stable strategies for predator switching , 1985 .

[15]  Robert M. May,et al.  Patterns of Dynamical Behaviour in Single-Species Populations , 1976 .

[16]  H. B. Wilson,et al.  Dynamics and evolution: evolutionarily stable attractors, invasion exponents and phenotype dynamics. , 1994, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[17]  U Liberman,et al.  External stability and ESS: criteria for initial increase of new mutant allele , 1988, Journal of mathematical biology.

[18]  Jörgen W. Weibull,et al.  Evolutionary Game Theory , 1996 .

[19]  P. Taylor An inclusive fitness model for dispersal of offspring , 1988 .

[20]  O. Diekmann,et al.  The Dynamics of Physiologically Structured Populations , 1986 .

[21]  Éva Kisdi,et al.  R0 or r: A matter of taste? , 1996 .

[22]  Bingtuan Li,et al.  Global Asymptotic Behavior of the Chemostat: General Response Functions and Different Removal Rates , 1998, SIAM J. Appl. Math..

[23]  F. Weissing,et al.  Genetic versus phenotypic models of selection: can genetics be neglected in a long-term perspective? , 1996, Journal of mathematical biology.

[24]  J. Metz,et al.  Selection for biennial life histories in plants , 1987, Vegetatio.

[25]  E. Pasztor Unexploited Dimensions of Optimization Life History Theory , 1988 .

[26]  Raymond Greene,et al.  Fitness , 1963, South African medical journal = Suid-Afrikaanse tydskrif vir geneeskunde.

[27]  Shripad Tuljapurkar,et al.  Population Dynamics in Variable Environments , 1990 .

[28]  J. Roughgarden Theory of Population Genetics and Evolutionary Ecology: An Introduction , 1995 .

[29]  T. Nagylaki Dynamics of density- and frequency-dependent selection. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[30]  O. Diekmann,et al.  On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations , 1990, Journal of mathematical biology.

[31]  J. Kozłowski Measuring fitness in life,,history studies. , 1993, Trends in ecology & evolution.

[32]  Gail S. K. Wolkowicz,et al.  Global dynamics of a mathematical model of competition in the chemostat: general response functions and differential death rates , 1992 .

[33]  Sze-Bi Hsu,et al.  A Mathematical Theory for Single-Nutrient Competition in Continuous Cultures of Micro-Organisms , 1977 .

[34]  P. Jagers,et al.  The deterministic evolution of general branching populations , 2001 .

[35]  Odo Diekmann,et al.  When Does Evolution Optimize? On the Relation Between Types of Density Dependence and Evolutionarily Stable Life History Parameters , 1996 .

[36]  S. Tuljapurkar,et al.  An uncertain life: demography in random environments. , 1989, Theoretical population biology.

[37]  É. Kisdi,et al.  Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree , 2004, Evolutionary Ecology.

[38]  M. Feldman,et al.  Initial Increase of New Mutants and Some Continuity Properties of ESS in Two-Locus Systems , 1984, The American Naturalist.

[39]  Mats Gyllenberg,et al.  On the concept of attractor for community-dynamical processes II: the case of structured populations , 2003, Journal of mathematical biology.

[40]  S. Stearns,et al.  The evolution of life histories in spatially heterogeneous environments: Optimal reaction norms revisited , 1993, Evolutionary Ecology.

[41]  R. Nisbet,et al.  How should we define 'fitness' for general ecological scenarios? , 1992, Trends in ecology & evolution.

[42]  G. Tullock,et al.  Competitive Exclusion. , 1960, Science.

[43]  O. Diekmann,et al.  On the Reciprocal Relationship Between Life Histories and Population Dynamics , 1994 .

[44]  R. Selten,et al.  Game theory and evolutionary biology , 1994 .

[45]  M Gyllenberg,et al.  Steady-state analysis of structured population models. , 2003, Theoretical population biology.

[46]  Richard E. Michod,et al.  Evolution of Life Histories in Response to Age-Specific Mortality Factors , 1979, The American Naturalist.

[47]  J. Metz,et al.  Adaptive Dynamics: A Geometrical Study of the Consequences of Nearly Faithful Reproduction , 1995 .

[48]  Even in the odd cases when evolution optimizes, unrelated population dynamical details may shine through in the ESS , 2008 .

[49]  E. Powell Criteria for the growth of contaminants and mutants in continuous culture. , 1958, Journal of general microbiology.

[50]  S. Hubbell,et al.  Single-nutrient microbial competition: qualitative agreement between experimental and theoretically forecast outcomes. , 1980, Science.

[51]  C. M. Lessells,et al.  The Evolution of Life Histories , 1994 .

[52]  I. Eshel Evolutionary and continuous stability , 1983 .

[53]  Johan A. J. Metz,et al.  A size dependent predator-prey interaction: who pursues whom? , 1990 .

[54]  I. Eshel On the changing concept of evolutionary population stability as a reflection of a changing point of view in the quantitative theory of evolution , 1996, Journal of mathematical biology.

[55]  Éva Kisdi,et al.  Density dependent life history evolution in fluctuating environments , 1993 .

[56]  S. Levin Lectu re Notes in Biomathematics , 1983 .

[57]  J. Roughgarden Resource partitioning among competing species--a coevolutionary approach. , 1976, Theoretical population biology.

[58]  M. Bulmer Theoretical Evolutionary Ecology , 1994 .

[59]  Eric L. Charnov,et al.  Life History Invariants: Some Explorations of Symmetry in Evolutionary Ecology , 1993 .

[60]  Odo Diekmann,et al.  On evolutionarily stable life histories, optimization and the need to be specific about density dependence , 1995 .

[61]  S. Lessard Evolutionary stability: one concept, several meanings. , 1990 .

[62]  G. Jong,et al.  Sex ratio under the haystack model: Polymorphism may occur , 1986 .

[63]  Ulf Dieckmann,et al.  Surprising evolutionary predictions from enhanced ecological realism. , 2006, Theoretical population biology.

[64]  P. Hammerstein Darwinian adaptation, population genetics and the streetcar theory of evolution , 1996, Journal of mathematical biology.

[65]  Johan A. J. Metz,et al.  IR-99-045 Species diversity and population regulation : the importance of environmental feedback dimensionality , 2022 .