Detecting Symmetry in Scalar Fields Using Augmented Extremum Graphs

Visualizing symmetric patterns in the data often helps the domain scientists make important observations and gain insights about the underlying experiment. Detecting symmetry in scalar fields is a nascent area of research and existing methods that detect symmetry are either not robust in the presence of noise or computationally costly. We propose a data structure called the augmented extremum graph and use it to design a novel symmetry detection method based on robust estimation of distances. The augmented extremum graph captures both topological and geometric information of the scalar field and enables robust and computationally efficient detection of symmetry. We apply the proposed method to detect symmetries in cryo-electron microscopy datasets and the experiments demonstrate that the algorithm is capable of detecting symmetry even in the presence of significant noise. We describe novel applications that use the detected symmetry to enhance visualization of scalar field data and facilitate their exploration.

[1]  Thomas A. Funkhouser,et al.  Symmetry factored embedding and distance , 2010, ACM Transactions on Graphics.

[2]  Hans-Peter Seidel,et al.  Partial Symmetry Detection in Volume Data , 2011, VMV.

[3]  Bernd Hamann,et al.  A topological hierarchy for functions on triangulated surfaces , 2004, IEEE Transactions on Visualization and Computer Graphics.

[4]  Hagit Hel-Or,et al.  Symmetry as a Continuous Feature , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Kurt Mehlhorn,et al.  Congruence, similarity, and symmetries of geometric objects , 1987, SCG '87.

[6]  Niloy J. Mitra,et al.  Symmetry in 3D Geometry: Extraction and Applications , 2013, Comput. Graph. Forum.

[7]  Taku Komura,et al.  Topology matching for fully automatic similarity estimation of 3D shapes , 2001, SIGGRAPH.

[8]  Szymon Rusinkiewicz,et al.  Eurographics Symposium on Geometry Processing (2007) Symmetry-enhanced Remeshing of Surfaces , 2022 .

[9]  Bernd Hamann,et al.  Segmenting point-sampled surfaces , 2010, The Visual Computer.

[10]  Frédéric Chazal,et al.  Molecular shape analysis based upon the morse-smale complex and the connolly function , 2002, SCG '03.

[11]  Richard D. Zakia Perception and imaging , 1997 .

[12]  Bernd Hamann,et al.  Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration , 2009, Mathematics and Visualization.

[13]  Valerio Pascucci,et al.  Spectral surface quadrangulation , 2006, SIGGRAPH 2006.

[14]  Alexander M. Bronstein,et al.  Full and Partial Symmetries of Non-rigid Shapes , 2010, International Journal of Computer Vision.

[15]  Hans-Peter Seidel,et al.  Symmetry Detection Using Feature Lines , 2009, Comput. Graph. Forum.

[16]  Valerio Pascucci,et al.  Understanding the structure of the turbulent mixing layer in hydrodynamic instabilities , 2006 .

[17]  Gunther H. Weber,et al.  Augmented Topological Descriptors of Pore Networks for Material Science , 2012, IEEE Transactions on Visualization and Computer Graphics.

[18]  Herbert Edelsbrunner,et al.  Computational Topology - an Introduction , 2009 .

[19]  Gerik Scheuermann,et al.  Interactive Comparison of Scalar Fields Based on Largest Contours with Applications to Flow Visualization , 2008, IEEE Transactions on Visualization and Computer Graphics.

[20]  Herbert Edelsbrunner,et al.  Hierarchical Morse—Smale Complexes for Piecewise Linear 2-Manifolds , 2003, Discret. Comput. Geom..

[21]  Vijay Natarajan,et al.  Symmetry in Scalar Field Topology , 2011, IEEE Transactions on Visualization and Computer Graphics.

[22]  Jianlong Zhou,et al.  Automatic Transfer Function Generation Using Contour Tree Controlled Residue Flow Model and Color Harmonics , 2009, IEEE Transactions on Visualization and Computer Graphics.

[23]  Leonidas J. Guibas,et al.  Discovering structural regularity in 3D geometry , 2008, SIGGRAPH 2008.

[24]  Stefan Bruckner,et al.  Eurographics/ Ieee-vgtc Symposium on Visualization 2010 Isosurface Similarity Maps , 2022 .

[25]  Mikhail J. Atallah,et al.  On Symmetry Detection , 1985, IEEE Transactions on Computers.

[26]  Bernd Hamann,et al.  Topologically Clean Distance Fields , 2007, IEEE Transactions on Visualization and Computer Graphics.

[27]  Valerio Pascucci,et al.  The TOPORRERY: computation and presentation of multi-resolution topology , 2009, Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration.

[28]  Hans-Peter Seidel,et al.  Shape Analysis with Subspace Symmetries , 2011, Comput. Graph. Forum.

[29]  Kai Xu,et al.  Partial intrinsic reflectional symmetry of 3D shapes , 2009, SIGGRAPH 2009.

[30]  François X. Sillion,et al.  Accurate detection of symmetries in 3D shapes , 2006, TOGS.

[31]  Valerio Pascucci,et al.  Local and global comparison of continuous functions , 2004, IEEE Visualization 2004.

[32]  Peter Lindstrom,et al.  Topological Spines: A Structure-preserving Visual Representation of Scalar Fields , 2011, IEEE Transactions on Visualization and Computer Graphics.

[33]  Chandrajit L. Bajaj,et al.  Affine Invariant Comparison of Molecular Shapes with Properties , 2006 .

[34]  Szymon Rusinkiewicz,et al.  Symmetry descriptors and 3D shape matching , 2004, SGP '04.

[35]  Thomas Lewiner,et al.  Applications of Forman's discrete Morse theory to topology visualization and mesh compression , 2004, IEEE Transactions on Visualization and Computer Graphics.

[36]  Bernard Chazelle,et al.  A Reflective Symmetry Descriptor for 3D Models , 2003, Algorithmica.

[37]  Daniel Baum,et al.  Automatic Extraction and Analysis of Realistic Pore Structures from µCT Data for Pore Space Characterization of Graded Soil , 2012 .

[38]  Han-Wei Shen,et al.  Parallel reflective symmetry transformation for volume data , 2007, Comput. Graph..

[39]  Vladimir G. Kim,et al.  Möbius Transformations For Global Intrinsic Symmetry Analysis , 2010, Comput. Graph. Forum.

[40]  Bernd Hamann,et al.  Topology-Controlled Volume Rendering , 2006, IEEE Transactions on Visualization and Computer Graphics.

[41]  Hans-Peter Seidel,et al.  A Graph-Based Approach to Symmetry Detection , 2008, VG/PBG@SIGGRAPH.

[42]  Herbert Edelsbrunner,et al.  Topological persistence and simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[43]  Vijay Natarajan,et al.  A Gradient‐Based Comparison Measure for Visual analysis of Multifield Data , 2011, Comput. Graph. Forum.