Improved Kernels for Several Problems on Planar Graphs

In this paper, we study the kernelization of the Induced Matching problem on planar graphs, the Parameterized Planar 4-Cycle Transversal problem and the Parameterized Planar Edge-Disjoint 4-Cycle Packing problem. For the Induced Matching problem on planar graphs, based on Gallai-Edmonds structure, a kernel of size 26k is presented, which improves the current best result 28k. For the Parameterized Planar 4-Cycle Transversal problem, by partitioning the vertices in given instance into four parts and analyzing the size of each part independently, a kernel with at most \(51k-22\) vertices is obtained, which improves the current best result 74k. Based on the kernelization process of the Parameterized Planar 4-Cycle Transversal problem, a kernel of size \(51k-22\) can also be obtained for the Parameterized Planar Edge-Disjoint 4-Cycle Packing problem, which improves the current best result 96k.

[1]  Carsten Thomassen,et al.  On the Chromatic Number of Triangle-Free Graphs of Large Minimum Degree , 2002, Comb..

[2]  Dieter Rautenbach,et al.  Some results on graphs without long induced paths , 2003, Inf. Process. Lett..

[3]  Junlei Zhu,et al.  Equitable list colorings of planar graphs without short cycles , 2008, Theor. Comput. Sci..

[4]  David Manlove,et al.  On the approximability of the maximum induced matching problem , 2005, J. Discrete Algorithms.

[5]  Kathie Cameron,et al.  Induced Matchings in Intersection Graphs , 2000, Electron. Notes Discret. Math..

[6]  Lukasz Kowalik,et al.  Improved induced matchings in sparse graphs , 2010, Discret. Appl. Math..

[7]  Gerd Finke,et al.  Approximability results for the maximum and minimum maximal induced matching problems , 2008, Discret. Optim..

[8]  Hannes Moser,et al.  Parameterized complexity of finding regular induced subgraphs , 2009, J. Discrete Algorithms.

[9]  Rolf Niedermeier,et al.  Polynomial-time data reduction for dominating set , 2002, JACM.

[10]  Yong Zhang,et al.  Kernelization for Cycle Transversal Problems , 2010, AAIM.

[11]  Kathie Cameron,et al.  Finding a maximum induced matching in weakly chordal graphs , 2003, Discret. Math..

[12]  Michael Krivelevich,et al.  On a conjecture of Tuza about packing and covering of triangles , 1995, Discret. Math..

[13]  Mihalis Yannakakis,et al.  Node-and edge-deletion NP-complete problems , 1978, STOC.

[14]  Alexandr V. Kostochka,et al.  M-degrees of quadrangle-free planar graphs , 2009 .

[15]  Michael Langberg,et al.  Approximating Maximum Subgraphs without Short Cycles , 2008, SIAM J. Discret. Math..

[16]  Alex J. Grant,et al.  Which Codes Have$4$-Cycle-Free Tanner Graphs? , 2006, IEEE Transactions on Information Theory.

[17]  Moshe Lewenstein,et al.  New results on induced matchings , 2000, Discret. Appl. Math..

[18]  Vadim V. Lozin On maximum induced matchings in bipartite graphs , 2002, Inf. Process. Lett..

[19]  Vijay V. Vazirani,et al.  NP-Completeness of Some Generalizations of the Maximum Matching Problem , 1982, Inf. Process. Lett..

[20]  Christian Komusiewicz,et al.  On Generating Triangle-Free Graphs , 2009, Electron. Notes Discret. Math..

[21]  Martin Charles Golumbic,et al.  Irredundancy in Circular Arc Graphs , 1993, Discret. Appl. Math..

[22]  Ge Xia,et al.  On the small cycle transversal of planar graphs , 2011, Theor. Comput. Sci..

[23]  Udi Rotics,et al.  Finding Maximum Induced Matchings in Subclasses of Claw-Free and P5-Free Graphs, and in Graphs with Matching and Induced Matching of Equal Maximum Size , 2003, Algorithmica.

[24]  Moshe Lewenstein,et al.  Tighter Approximations for Maximum Induced Matchings in Regular Graphs , 2005, WAOA.

[25]  Ge Xia,et al.  On the induced matching problem , 2011, J. Comput. Syst. Sci..

[26]  Noga Alon,et al.  Maximum cuts and judicious partitions in graphs without short cycles , 2003, J. Comb. Theory B.

[27]  Rolf Niedermeier,et al.  Linear Problem Kernels for NP-Hard Problems on Planar Graphs , 2007, ICALP.

[28]  Miroslav Chlebík,et al.  Approximation Hardness of Dominating Set Problems , 2004, ESA.

[29]  Hannes Moser,et al.  The parameterized complexity of the induced matching problem , 2009, Discret. Appl. Math..

[30]  P. Pevzner,et al.  De Novo Repeat Classification and Fragment Assembly , 2004 .

[31]  Yong Zhang,et al.  Edge-disjoint packing of stars and cycles , 2016, Theor. Comput. Sci..