The Impact of Peukert-Effect on Optimal Control of a Battery-Electrically Driven Airplane

Further investigation on the impact of the so called Peukert effect on optimal control of a battery-electrically driven airplane is presented. To analyse the impact of the Peukert effect, an ideal model without this battery concerning effect and a realistic model containing different Peukert exponents are built up. For the different models, optimal trajectories are generated and altitude dependency of a maximum range horizontal flight criterion is investigated. On the one hand, it can be shown that the Peukert effect causes a special form of optimal trajectories. On the other hand, it turns out that range optimal horizontal flight is more efficient in lower altitudes, if the Peukert effect is taken into account. The particular efficiency properties of battery electrical propulsion can be explained with its consumption characteristic, which appear in form of a power function with real exponent.