Some Statistics on Restricted 132 Involutions

Abstract. In [14] Guibert and Mansour studied involutions on n letters avoiding (or containing exactly once) 132 and avoiding (or containing exactly once) an arbitrary pattern on k letters. They also established a bijection between 132-avoiding involutions and Dyck word prefixes of same length. Extending this bijection to bilateral words it allows to determine more parameters; in particular, we consider the number of inversions and rises of the involutions on the words. This is the starting point for considering two different directions: even/odd involutions and statistics of some generalized patterns. Thus we first study generating functions for the number of even or odd involutions on n letters avoiding (or containing exactly once) 132 and avoiding (or containing exactly once) an arbitrary pattern $ \tau $ on k letters. In several interesting cases the generating function depends only on k and is expressed via Chebyshev polynomials of the second kind. Next, we consider other statistics on 132-avoiding involutions by counting occurrences of some generalized patterns, related to the enumeration according to the number of rises.

[1]  Doron Zeilberger,et al.  Permutation Patterns and Continued Fractions , 1999, Electron. J. Comb..

[2]  Mike D. Atkinson,et al.  Restricted permutations , 1999, Discret. Math..

[3]  Julian West,et al.  Generating trees and forbidden subsequences , 1996, Discret. Math..

[4]  C. Schensted Longest Increasing and Decreasing Subsequences , 1961, Canadian Journal of Mathematics.

[5]  G. de B. Robinson,et al.  On the Representations of the Symmetric Group , 1938 .

[6]  Dominique Gouyou-Beauchamps,et al.  Standard Young Tableaux of Height 4 and 5 , 1989, Eur. J. Comb..

[7]  T. Mansour,et al.  Restricted 132-Involutions and Chebyshev Polynomials , 2002 .

[8]  Ira M. Gessel,et al.  Symmetric functions and P-recursiveness , 1990, J. Comb. Theory, Ser. A.

[9]  Miklós Bóna,et al.  The Permutation Classes Equinumerous to the Smooth Class , 1998, Electron. J. Comb..

[10]  S. Gire,et al.  Arbres, permutations à motifs exclus et cartes planaires : quelques problèmes algorithmiques et combinatoires , 1993 .

[11]  Robert Cori,et al.  Une Preuve Combinatiore de la Rationalité d'une Série Génératrice Associée aux Arbres , 1982, RAIRO - Theoretical Informatics and Applications.

[12]  Robert G. Rieper,et al.  Continued Fractions and Catalan Problems , 2000, Electron. J. Comb..

[13]  Aaron Robertson Permutations Containing and Avoiding 123 and 132 Patterns , 1999, Discret. Math. Theor. Comput. Sci..

[14]  Fan Chung Graham,et al.  The Number of Baxter Permutations , 1978, J. Comb. Theory, Ser. A.

[15]  Donald E. Knuth,et al.  The art of computer programming: V.1.: Fundamental algorithms , 1997 .

[16]  Toufik Mansour Continued Fractions and Generalized Patterns , 2002, Eur. J. Comb..

[17]  Anders Claesson GENERALISED PATTERN AVOIDANCE , 2000 .

[18]  Amitai Regev,et al.  Asymptotic values for degrees associated with strips of young diagrams , 1981 .

[19]  Toufik Mansour Continued Fractions, Statistics, And Generalized Patterns , 2004, Ars Comb..

[20]  T. J. Rivlin Chebyshev polynomials : from approximation theory to algebra and number theory , 1990 .

[21]  Olivier Guibert,et al.  Vexillary Involutions are Enumerated by Motzkin Numbers , 2001 .

[22]  Donald E. Knuth,et al.  The art of computer programming, volume 3: (2nd ed.) sorting and searching , 1998 .

[23]  T. Mansour,et al.  Restricted 132-Avoiding Permutations , 2000, Adv. Appl. Math..

[24]  Eric Babson,et al.  Generalized permutation patterns and a classification of the Mahonian statistics , 2000 .

[25]  A. Charafi,et al.  Chebyshev polynomials—From approximation theory to algebra and number theory: 2nd edition. Theodore J. Rivlin, John Wiley & Sons Limited, 1990. pp. 249, hardcover. £45.50 , 1992 .

[26]  F. Murnaghan,et al.  On the Representations of the Symmetric Group , 1937 .

[27]  Sergey Kitaev Multi-avoidance of generalised patterns , 2003, Discret. Math..

[28]  T. J. Rivlin The Chebyshev polynomials , 1974 .

[29]  Darla Kremer Permutations with forbidden subsequences and a generalized Schro"der number , 2000, Discret. Math..

[30]  T. Mansour Restricted 1-3-2 Permutations and Generalized Patterns , 2001 .

[31]  Julian West,et al.  Permutations with forbidden subsequences, and, stack-sortable permutations , 1990 .

[32]  Julian West,et al.  Forbidden subsequences and Chebyshev polynomials , 1999, Discret. Math..

[33]  Anders Claesson,et al.  Generalized Pattern Avoidance , 2001, Eur. J. Comb..

[34]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[35]  T. Mansour,et al.  Layered Restrictions and Chebyshev Polynomials , 2000 .

[36]  Anders Claesson,et al.  Catalan continued fractions and increasing subsequences in permutations , 2002, Discret. Math..

[37]  Toufik Mansour,et al.  Restricted Permutations, Continued Fractions, and Chebyshev Polynomials , 2000, Electron. J. Comb..

[38]  Christian Krattenthaler,et al.  Permutations with Restricted Patterns and Dyck Paths , 2000, Adv. Appl. Math..

[39]  T. Mansour,et al.  Restricted permutations and Chebyshev polynomials. , 2002 .

[40]  Olivier Guibert Combinatoire des permutations à motifs exclus en liaison avec mots, cartes planaires et tableaux de Young , 1995 .