High-pressure air injection (HPAI) is an enhanced oil recovery (EOR) process in which compressed air is injected into a deep, light-oil reservoir, with the expectation that the oxygen in the injected air will react with a fraction of the reservoir oil at an elevated temperature to produce carbon dioxide. Over the years, HPAI has been considered a simple flue-gas flood, giving little credit to the thermal drive as a production mechanism. The truth is that, although early production during a HPAI process is mainly due to re-pressurization and gasflood effects, once a pore volume of air has been injected the combustion front becomes the main driving mechanism. This paper presents laboratory and field evidence of the presence of a thermal front during HPAI operations, and of its beneficial impact on oil production. Production and injection data from the Buffalo Field, which comprises the oldest HPAI projects currently in operation, were gathered and analyzed for this purpose. These HPAI projects definitely do not behave as simple immiscible gasfloods. This study shows that a HPAI project has the potential to yield higher recoveries than a simple immiscible gasflood. Furthermore, it gives recommendations about how to operate the process to take advantage of its full capabilities.