On high precision methods for computing integrals involving Bessel functions
暂无分享,去创建一个
[1] T. Patterson. On high precision methods for the evaluation of fourier integrals with finite and infinite limits , 1976 .
[2] Numerical calculation of Fourier-transform integrals , 1973 .
[3] Peter Linz,et al. A method for computing Bessel function integrals , 1972 .
[4] By J. N. Lyness. Adjusted forms of the Fourier coefficient asymptotic expansion and applications in numerical quadrature , 1971 .
[5] E. M. Gelbard,et al. Gaussian quadratures for the integrals ₀^{∞}(-²)() and ₀^{}(-²)() , 1969 .
[6] G. D. Byrne,et al. Gaussian Quadratures for the Integrals ∞ 0 exp(-x 2 )f(x)dx and b 0 exp(-x 2 )f(x)dx , 1969 .
[7] T. Tietz,et al. High-energy collision theory , 1968 .
[8] N. S. Bakhvalov,et al. Evaluation of the integrals of oscillating functions by interpolation at nodes of gaussian quadratures , 1968 .
[9] P. Turán,et al. Notes on interpolation. IX , 1965 .
[10] Raymond J. Seeger,et al. Lectures in Theoretical Physics , 1962 .
[11] W. Barrett,et al. Convergence Properties of Gaussian Quadrature Formulae , 1961, Comput. J..
[12] C. W. Clenshaw,et al. A method for numerical integration on an automatic computer , 1960 .
[13] P. Turán,et al. Notes on interpolation. VIII , 1959 .
[14] I. M. Longman,et al. Note on a method for computing infinite integrals of oscillatory functions , 1956, Mathematical Proceedings of the Cambridge Philosophical Society.