A Taxonomy of Collaborative-Based Recommender Systems

The explosive growth in the amount of information available in the WWW and the emergence of e-commerce in recent years has demanded new ways to deliver personalized content. Recommender systems [51] have emerged in this context as a solution based on collective intelligence to either predict whether a particular user will like a particular item or identify the collection of items that will be of interest to a certain user. Recommender systems have an excellent ability to characterize and recommend items within huge collections of data, what makes them a computerized alternative to human recommendations. Since useful personalized recommendations can add value to the user experience, some of the largest e-commerce web sites include recommender engines. Three well known examples are Amazon.com [1], LastFM [4] and Netflix [6].

[1]  Hsinchun Chen,et al.  A graph-based recommender system for digital library , 2002, JCDL '02.

[2]  John Riedl,et al.  GroupLens: an open architecture for collaborative filtering of netnews , 1994, CSCW '94.

[3]  Mark Rosenstein,et al.  Recommending and evaluating choices in a virtual community of use , 1995, CHI '95.

[4]  Eric Horvitz,et al.  Collaborative Filtering by Personality Diagnosis: A Hybrid Memory and Model-Based Approach , 2000, UAI.

[5]  Qiang Yang,et al.  Scalable collaborative filtering using cluster-based smoothing , 2005, SIGIR '05.

[6]  Douglas B. Terry,et al.  Using collaborative filtering to weave an information tapestry , 1992, CACM.

[7]  Rong Zheng,et al.  RQL: A Query Language For Recommender Systems , 2005 .

[8]  Sergio A. Alvarez,et al.  A New Adaptive-Support Algorithm for Association Rule Mining , 2000 .

[9]  Nicholas J. Belkin,et al.  Information filtering and information retrieval: two sides of the same coin? , 1992, CACM.

[10]  Michael J. Pazzani,et al.  Collaborative Filtering with the Simple Bayesian Classifier , 2000, PRICAI.

[11]  George Karypis,et al.  Feature-based recommendation system , 2005, CIKM '05.

[12]  Prabhakar Raghavan,et al.  Competitive recommendation systems , 2002, STOC '02.

[13]  Kenneth Y. Goldberg,et al.  Eigentaste: A Constant Time Collaborative Filtering Algorithm , 2001, Information Retrieval.

[14]  Philip S. Yu Editorial: State of the Transactions , 2004, IEEE Trans. Knowl. Data Eng..

[15]  Raymond J. Mooney,et al.  Content-boosted collaborative filtering for improved recommendations , 2002, AAAI/IAAI.

[16]  David Heckerman,et al.  Empirical Analysis of Predictive Algorithms for Collaborative Filtering , 1998, UAI.

[17]  George Karypis,et al.  Item-based top-N recommendation algorithms , 2004, TOIS.

[18]  Sergio A. Alvarez,et al.  Efficient Adaptive-Support Association Rule Mining for Recommender Systems , 2004, Data Mining and Knowledge Discovery.

[19]  Hans-Peter Kriegel,et al.  Ieee Transactions on Knowledge and Data Engineering Probabilistic Memory-based Collaborative Filtering , 2022 .

[20]  John Riedl,et al.  Item-based collaborative filtering recommendation algorithms , 2001, WWW '01.

[21]  Luo Si,et al.  Collaborative filtering with decoupled models for preferences and ratings , 2003, CIKM '03.

[22]  John Riedl,et al.  Analysis of recommendation algorithms for e-commerce , 2000, EC '00.

[23]  Hsinchun Chen,et al.  Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering , 2004, TOIS.

[24]  Yoav Shoham,et al.  Fab: content-based, collaborative recommendation , 1997, CACM.

[25]  Philip S. Yu,et al.  Horting hatches an egg: a new graph-theoretic approach to collaborative filtering , 1999, KDD '99.

[26]  Bradley N. Miller,et al.  GroupLens: applying collaborative filtering to Usenet news , 1997, CACM.

[27]  N. Littlestone Learning Quickly When Irrelevant Attributes Abound: A New Linear-Threshold Algorithm , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[28]  Mark Claypool,et al.  Combining Content-Based and Collaborative Filters in an Online Newspaper , 1999, SIGIR 1999.

[29]  Michael J. Pazzani,et al.  A Framework for Collaborative, Content-Based and Demographic Filtering , 1999, Artificial Intelligence Review.

[30]  Yehuda Koren,et al.  Improved Neighborhood-based Collaborative Filtering , 2007 .

[31]  Ayhan Demiriz,et al.  Enhancing Product Recommender Systems on Sparse Binary Data , 2004, Data Mining and Knowledge Discovery.

[32]  Hsinchun Chen,et al.  An algorithmic approach to concept exploration in a large knowledge network (automatic thesaurus consultation): symbolic branch-and-bound search vs. connectionist Hopfield net activation , 1995 .

[33]  Gediminas Adomavicius,et al.  Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions , 2005, IEEE Transactions on Knowledge and Data Engineering.

[34]  Thomas Hofmann,et al.  Latent Class Models for Collaborative Filtering , 1999, IJCAI.

[35]  Hsinchun Chen,et al.  A graph model for E-commerce recommender systems , 2004, J. Assoc. Inf. Sci. Technol..

[36]  Yoram Singer,et al.  Learning to Order Things , 1997, NIPS.

[37]  Thomas Hofmann,et al.  Latent semantic models for collaborative filtering , 2004, TOIS.

[38]  Greg Linden,et al.  Amazon . com Recommendations Item-to-Item Collaborative Filtering , 2001 .

[39]  Tao Luo,et al.  Discovery and Evaluation of Aggregate Usage Profiles for Web Personalization , 2004, Data Mining and Knowledge Discovery.

[40]  Jun Wang,et al.  Unifying user-based and item-based collaborative filtering approaches by similarity fusion , 2006, SIGIR.

[41]  Jonathan L. Herlocker,et al.  Evaluating collaborative filtering recommender systems , 2004, TOIS.

[42]  David Maxwell Chickering,et al.  Dependency Networks for Inference, Collaborative Filtering, and Data Visualization , 2000, J. Mach. Learn. Res..

[43]  Luo Si,et al.  Preference-based Graphic Models for Collaborative Filtering , 2002, UAI.

[44]  John Riedl,et al.  Recommender systems in e-commerce , 1999, EC '99.

[45]  Wee Sun Lee Collaborative Learning and Recommender Systems , 2001, ICML.

[46]  Paul Resnick,et al.  Recommender systems , 1997, CACM.

[47]  Pattie Maes,et al.  Social information filtering: algorithms for automating “word of mouth” , 1995, CHI '95.

[48]  Sean M. McNee,et al.  Getting to know you: learning new user preferences in recommender systems , 2002, IUI '02.

[49]  Michael J. Pazzani,et al.  Learning Collaborative Information Filters , 1998, ICML.

[50]  Tong Zhang,et al.  Recommender Systems Using Linear Classifiers , 2002 .

[51]  John Riedl,et al.  Application of Dimensionality Reduction in Recommender System - A Case Study , 2000 .

[52]  Dimitris Plexousakis,et al.  Alleviating the Sparsity Problem of Collaborative Filtering Using Trust Inferences , 2005, iTrust.