Design and development of low-power and reliable logic circuits based on spin-transfer torque magnetic tunnel junctions

With the shrinking of CMOS (complementary metal oxide semi-conductor) technology, static and dynamic power increase dramatically and indeed has become one of the main challenges due to the increasing leakage current and long transfer distance between memory and logic chips. In the past decades, spintronics devices, such as spin transfer torque based magnetic tunnel junction (STT-MTJ), are widely investigated to overcome the static power issue thanks to their non-volatility. Hybrid logic-in-memory (LIM) architecture allows spintronics devices to be fabricated over the CMOS circuit plane, thereby reducing the transfer latency and the dynamic power dissipation. This thesis focuses on the design of hybrid MTJ/CMOS logic circuits and memories for low-power computing system.By using a compact MTJ model and the STMicroelectronics design kit for regular CMOS design, we investigate the hybrid MTJ/CMOS circuits for single-bit and multi-bit reading and writing. Optimization methods are also introduced to improve the reliability, which is extremely important for logic circuits where error correction blocks cannot be easily embedded without sacrificing their performances or adding extra area to the circuit. We extend the application of multi-context hybrid MTJ/CMOS structure to the memory design. Magnetic random access memory (MRAM) with simple peripheral circuits is designed.Based on the LIM concept, non-volatile logic/arithmetic circuits are designed to integrate MTJs not only as storage elements but also as logic operands. First, we design and theoretically analyze the non-volatile logic gates (NVLGs) including NOT, AND, OR and XOR. Then, 1-bit and 8-bit non-volatile full-adders (NVFAs), the basic elements for arithmetic operations, are proposed and compared with the traditional CMOS-based full-adder. The effect of CMOS transistor sizing and the MTJ parameters on the performances of NVFA is studied. Furthermore, we optimize the NVFA from two levels. From the structure-level, an ultra-high reliability voltage-mode sensing circuit is used to store the operand of NVFA. From the device-level, we propose 3-terminal MTJ switched by spin-Hall-assisted STT to replace the 2-terminal MTJ because of its smaller writing time and power consumption. Based on the NVLGs and NVFAs, other logic circuits can be built, for instance, non-volatile subtractor.Finally, non-volatile content addressable memory (NVCAM) is proposed. Two magnetic decoders aim at selecting a word line to be read or written and saving the corresponding search location in non-volatile state.