Slow and Fast Light

Recent research has established that it is possible to exercise extraordinary control of the velocity of propagation of light pulses through a material system. Both extremely slow propagation (much slower than the velocity of light in vacuum) and fast propagation (exceeding the velocity of light in vacuum) have been observed. This article summarizes this recent research, placing special emphasis on the description of the underlying physical processes leading to the modification of the velocity of light. To understand these new results, it is crucial to recall the distinction between the phase velocity and the group velocity of a light field. These concepts will be defined more precisely below; for the present we note that the group velocity gives the velocity with which a pulse of light propagates through a material system. One thus speaks of “fast” or “slow” light depending on the value of the group velocity vg in comparison to the velocity of light c in vacuum.

[1]  Bowden,et al.  Ultrashort pulse propagation at the photonic band edge: Large tunable group delay with minimal distortion and loss. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[2]  T. Jedju,et al.  Spin-Flip Raman Echo in n -Type CdS , 1976 .

[3]  Limitations of light delay and storage times in electromagnetically induced transparency experiments with condensates , 2002 .

[4]  R. Boyd,et al.  Enhanced self-action effects by electromagnetically induced transparency in the two-level atom , 2001 .

[5]  Z. Dutton,et al.  Observation of coherent optical information storage in an atomic medium using halted light pulses , 2001, Nature.

[6]  M. Lukin,et al.  Controlling photons using electromagnetically induced transparency , 2001, Nature.

[7]  P. G. Kryukov,et al.  Propagation Velocity of an Intense Light Pulse in a Medium with Inverse Population , 1966 .

[8]  L. Hau,et al.  Nonlinear Optics at Low Light Levels , 1999 .

[9]  L. J. Wang,et al.  Gain-assisted superluminal light propagation , 2000, Nature.

[10]  R. Y. Chiao,et al.  Superluminal signals: causal loop paradoxes revisited , 1998 .

[11]  C. Garrett,et al.  Propagation of a Gaussian Light Pulse through an Anomalous Dispersion Medium , 1970 .

[12]  R. V. Jones 'Fresnel aether drag' in a transversely moving medium , 1972, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[13]  Amnon Yariv,et al.  Pulse Propagation in a High-Gain Medium , 1971 .

[14]  Edward S. Fry,et al.  ULTRASLOW GROUP VELOCITY AND ENHANCED NONLINEAR OPTICAL EFFECTS IN A COHERENTLY DRIVEN HOT ATOMIC GAS , 1999, quant-ph/9904031.

[15]  Harris,et al.  Dispersive properties of electromagnetically induced transparency. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[16]  Rajeev J. Ram,et al.  All-optical wavelength converter and switch based on electromagnetically induced transparency , 2000 .

[17]  Peter W. Milonni,et al.  Field Quantization and Radiative Processes in Dispersive Dielectric Media , 1995 .

[18]  A. Lezama,et al.  Steep anomalous dispersion in coherently prepared Rb vapor , 1999, quant-ph/9906019.

[19]  Aephraim M. Steinberg,et al.  Dispersionless, highly superluminal propagation in a medium with a gain doublet. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[20]  Lukin,et al.  Entanglement of atomic ensembles by trapping correlated photon states , 2000, Physical review letters.

[21]  S. Wong,et al.  Chu and Wong Respond , 1982 .

[22]  Shun Lien Chuang,et al.  Variable optical buffer using slow light in semiconductor nanostructures , 2003, Proc. IEEE.

[23]  M. Scully,et al.  Stopping light via hot atoms. , 2001, Physical review letters.

[24]  E. Yablonovitch,et al.  Photonic band structure: The face-centered-cubic case. , 1989, Physical review letters.

[25]  Robert W. Boyd,et al.  SLOW AND STOPPED LIGHT 'Slow' and 'fast' light in resonator-coupled waveguides , 2002 .

[26]  Harris Electromagnetically Induced Transparency in an Ideal Plasma. , 1996, Physical review letters.

[27]  Aephraim M. Steinberg,et al.  Measurement of the single-photon tunneling time. , 1993, Physical review letters.

[28]  M. Lukin,et al.  Storage of light in atomic vapor. , 2000, Physical Review Letters.

[29]  L. J. Wang,et al.  Signal velocity, causality, and quantum noise in superluminal light pulse propagation. , 2001, Physical review letters.

[30]  Garrison,et al.  Optical pulse propagation at negative group velocities due to a nearby gain line. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[31]  John,et al.  Quantum optics of localized light in a photonic band gap. , 1991, Physical review. B, Condensed matter.

[32]  A. Scherer,et al.  Coupled-resonator optical waveguide: a proposal and analysis. , 1999, Optics letters.

[33]  S. Harris,et al.  Electromagnetically Induced Transparency , 1991, QELS '97., Summaries of Papers Presented at the Quantum Electronics and Laser Science Conference.

[34]  A. Selden Analysis of the saturable absorber transmission equation , 1970 .

[35]  K. Oughstun,et al.  Failure of the group-velocity description for ultrawideband pulse propagation in a causally dispersive, absorptive dielectric , 1999 .

[36]  Glasgow,et al.  Average energy flow of optical pulses in dispersive media , 2000, Physical review letters.

[37]  T. Bieber,et al.  Pulse Velocity in a Self‐Locked He–Ne Laser , 1969 .

[38]  A. Katz,et al.  Pulse Propagation in an Absorbing Medium , 1982 .

[39]  M. Ware,et al.  Energy transport in linear dielectrics. , 2001, Optics express.

[40]  George C. Sherman,et al.  Description of Pulse Dynamics in Lorentz Media in Terms of the Energy Velocity and Attenuation of Time-Harmonic Waves , 1981 .

[41]  K. Oughstun,et al.  FAILURE OF THE QUASIMONOCHROMATIC APPROXIMATION FOR ULTRASHORT PULSE PROPAGATION IN A DISPERSIVE, ATTENUATIVE MEDIUM , 1997 .

[42]  Valeriy V. Yashchuk,et al.  NONLINEAR MAGNETO-OPTICS AND REDUCED GROUP VELOCITY OF LIGHT IN ATOMIC VAPOR WITH SLOW GROUND STATE RELAXATION , 1999 .

[43]  Steven Chu,et al.  Linear Pulse Propagation in an Absorbing Medium , 1982 .

[44]  Harris,et al.  Electromagnetically induced transparency: Propagation dynamics. , 1995, Physical review letters.

[45]  Agarwal,et al.  Control of phase matching and nonlinear generation in dense media by resonant fields. , 1986, Physical review letters.

[46]  Steven G. Johnson,et al.  Photonic-crystal slow-light enhancement of nonlinear phase sensitivity , 2002 .

[47]  M. Ware,et al.  Role of the instantaneous spectrum on pulse propagation in causal linear dielectrics. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[48]  Jacob B. Khurgin,et al.  Light slowing down in Moiré fiber gratings and its implications for nonlinear optics , 2000 .

[49]  Hailin Wang,et al.  Spin coherence and electromagnetically induced transparency via exciton correlations. , 2002, Physical review letters.

[50]  L. Brillouin,et al.  Über die Fortpflanzung des Lichtes in dispergierenden Medien , 1914 .

[51]  Xiao,et al.  Measurement of Dispersive Properties of Electromagnetically Induced Transparency in Rubidium Atoms. , 1995, Physical review letters.

[52]  A C Selden,et al.  Pulse transmission through a saturable absorber , 1967 .

[53]  Shun Lien Chuang,et al.  Variable semiconductor all-optical buffer , 2002 .

[54]  R. Kronig On the Theory of Dispersion of X-Rays , 1926 .

[55]  W. Lamb,et al.  Propagation of light pulses in a laser amplifier , 1969 .

[56]  Kerr-stabilized super-resonant modes in coupled-resonator optical waveguides. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[57]  Energy transport in dispersive media and superluminal group velocities , 1997 .

[58]  A. Sommerfeld,et al.  Über die Fortpflanzung des Lichtes in dispergierenden Medien , 1914 .

[59]  G. Kurizki,et al.  Tachyonlike Excitations in Inverted Two-Level Media. , 1996, Physical review letters.

[60]  F. R. Faxvog,et al.  MEASURED PULSE VELOCITY GREATER THAN c IN A NEON ABSORPTION CELL , 1970 .

[61]  Morgan W. Mitchell,et al.  NEGATIVE GROUP DELAY AND FRONTS IN A CAUSAL SYSTEM : AN EXPERIMENT WITH VERY LOW FREQUENCY BANDPASS AMPLIFIERS , 1997 .

[62]  Jennifer Yates,et al.  Limited-range wavelength translation in all-optical networks , 1996, Proceedings of IEEE INFOCOM '96. Conference on Computer Communications.

[63]  R. Chiao,et al.  Superluminal (but causal) propagation of wave packets in transparent media with inverted atomic populations. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[64]  G. Diener,et al.  Superluminal group velocities and information transfer , 1996 .

[65]  S. Harris,et al.  Nonlinear optics at maximum coherence , 1997, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[66]  M. Ware,et al.  Poynting's theorem and luminal total energy transport in passive dielectric media. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[67]  S. Harris Pondermotive forces with slow light. , 2000, Physical review letters.

[68]  Nicholas Chako,et al.  Wave propagation and group velocity , 1960 .

[69]  Harris,et al.  Nonlinear optical processes using electromagnetically induced transparency. , 1990, Physical review letters.

[70]  Aephraim M. Steinberg,et al.  VI: Tunneling Times and Superluminality , 1997 .

[71]  R. E. Slusher,et al.  Optical delay lines based on optical filters , 2001 .

[72]  S. Harris,et al.  Light speed reduction to 17 metres per second in an ultracold atomic gas , 1999, Nature.

[73]  J. Marangos Slow light in cool atoms , 1999, Nature.

[74]  Scully,et al.  Enhancement of the index of refraction via quantum coherence. , 1991, Physical review letters.

[75]  P. Milonni,et al.  Quantum theory of superluminal pulse propagation. , 2001, Optics Express.

[76]  S. Schwarz,et al.  WAVE INTERACTIONS IN SATURABLE ABSORBERS , 1967 .

[77]  S. Hartmann Photon, spin, and Raman echoes , 1968 .

[78]  T. Katsuyama,et al.  Time‐of‐flight measurement of excitonic polaritons in a GaAs/AlGaAs quantum well , 1988 .

[79]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[80]  A. Frova,et al.  Pulse Delay Effects in the He–Ne Laser Mode‐Locked by a Ne Absorption Cell , 1969 .

[81]  W. J. Stewart,et al.  Optical slow-wave resonant modulation in electro-optic GaAs/AlGaAs modulators. , 1999 .

[82]  J. Sipe,et al.  Optical pulse propagation in nonlinear photonic crystals. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[83]  H. Haus Momentum, energy and power densities of TEM wave packet , 1969 .