Diversity in conserved genes in tomato

[1]  Douglas G Scofield,et al.  Intron size, abundance, and distribution within untranslated regions of genes. , 2006, Molecular biology and evolution.

[2]  S. Tanksley,et al.  Combining Bioinformatics and Phylogenetics to Identify Large Sets of Single-Copy Orthologous Genes (COSII) for Comparative, Evolutionary and Systematic Studies: A Test Case in the Euasterid Plant Clade , 2006, Genetics.

[3]  L. Rieseberg,et al.  Analyses of Synteny Between Arabidopsis thaliana and Species in the Asteraceae Reveal a Complex Network of Small Syntenic Segments and Major Chromosomal Rearrangements , 2006, Genetics.

[4]  A. Baldo,et al.  Tomato SNP Discovery by EST Mining and Resequencing , 2005, Molecular Breeding.

[5]  Mark H. Wright,et al.  The SOL Genomics Network. A Comparative Resource for Solanaceae Biology and Beyond1 , 2005, Plant Physiology.

[6]  P. Schnable,et al.  Temperature gradient capillary electrophoresis (TGCE)–a tool for the high-throughput discovery and mapping of SNPs and IDPs , 2005, Theoretical and Applied Genetics.

[7]  E. Kabelka,et al.  Discovery of single nucleotide polymorphisms in Lycopersicon esculentum by computer aided analysis of expressed sequence tags , 2004 .

[8]  E. Kabelka,et al.  Improved Tomato Fruit Color within an Inbred Backcross Line Derived from Lycopersicon esculentum and L. hirsutum Involves the Interaction of Loci , 2004 .

[9]  S. Tanksley,et al.  Genetic improvement of processing tomatoes: A 20 years perspective , 1999, Euphytica.

[10]  S. Tanksley,et al.  Chloroplast DNA sequences integrated into an intron of a tomato nuclear gene , 1988, Molecular and General Genetics MGG.

[11]  J. Scott,et al.  Monogenic resistance in tomato to Fusarium oxysporum f. sp. lycopersici race 3 , 2004, Euphytica.

[12]  Mark Jung,et al.  SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines , 2002, BMC Genetics.

[13]  D. Brunel,et al.  From Arabidopsis thaliana to Brassica napus: development of amplified consensus genetic markers (ACGM) for construction of a gene map , 2002, Theoretical and Applied Genetics.

[14]  T. C. Nesbitt,et al.  Comparative sequencing in the genus Lycopersicon. Implications for the evolution of fruit size in the domestication of cultivated tomatoes. , 2002, Genetics.

[15]  R. Van der Hoeven,et al.  Identification, Analysis, and Utilization of Conserved Ortholog Set Markers for Comparative Genomics in Higher Plants Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.010479. , 2002, The Plant Cell Online.

[16]  S. Tanksley,et al.  Identification and characterization of a novel locus controlling early fruit development in tomato , 2001, Theoretical and Applied Genetics.

[17]  T. C. Nesbitt,et al.  fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. , 2000, Science.

[18]  E. Fridman,et al.  A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[19]  P Green,et al.  Base-calling of automated sequencer traces using phred. II. Error probabilities. , 1998, Genome research.

[20]  P. Green,et al.  Base-calling of automated sequencer traces using phred. I. Accuracy assessment. , 1998, Genome research.

[21]  T. F. Laughlin,et al.  Comparative anchor tagged sequences (CATS) for integrative mapping of mammalian genomes , 1997, Nature Genetics.

[22]  D. Zamir,et al.  An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. , 1995, Genetics.

[23]  G. Martin,et al.  High density molecular linkage maps of the tomato and potato genomes. , 1992, Genetics.

[24]  R. Gardner `Mountain Spring' Tomato; NC8276 and NC84173 Tomato Breeding Lines , 1992 .

[25]  W. Gould,et al.  `Ohio 8245' Processing Tomato , 1991 .