Trimer structures formed by target-triggered AuNPs self-assembly inducing electromagnetic hot spots for SERS-fluorescence dual-signal detection of intracellular miRNAs.

[1]  Shusheng Zhang,et al.  Light-Activated Nanodevice for On-Demand Imaging of miRNA in Living Cells via Logic Assembly. , 2022, ACS applied materials & interfaces.

[2]  R. Jin,et al.  Double-helical assembly of heterodimeric nanoclusters into supercrystals , 2021, Nature.

[3]  Hong Zhou,et al.  Many Birds, One Stone: A Smart Nanodevice for Ratiometric Dual-Spectrum Assay of Intracellular MicroRNA and Multimodal Synergetic Cancer Therapy. , 2021, ACS nano.

[4]  Jinhong Guo,et al.  Mesoporous Nanostructures Encapsulated with Metallic Nanodots for Smart SERS Sensing. , 2020, ACS applied materials & interfaces.

[5]  Sujuan Ye,et al.  Fluorescent-Raman Binary Star Ratio Probe for MicroRNA Detection and Imaging in Living Cells. , 2020, Analytical chemistry.

[6]  Baohong Liu,et al.  Construction of Dual-Color Probes with Target-Triggered Signal Amplification for In Situ Single-Molecule Imaging of MicroRNA. , 2020, ACS nano.

[7]  R. Adnan,et al.  Gold, Silver, and Palladium Nanoparticles: A Chemical Tool for Biomedical Applications , 2020, Frontiers in Chemistry.

[8]  Z. Tian,et al.  Core-Shell Nanostructure-Enhanced Raman Spectroscopy for Surface Catalysis. , 2020, Accounts of chemical research.

[9]  Huairong Zhang,et al.  Electrochemiluminescence-Microscopy for microRNA Imaging in Single Cancer Cell Combined with Chemotherapy-Photothermal Therapy. , 2019, Analytical chemistry.

[10]  J. Nam,et al.  Hierarchic Interfacial Nanocube Assembly for Sensitive, Selective, and Quantitative DNA Detection with Surface-Enhanced Raman Scattering. , 2019, Analytical chemistry.

[11]  Yongxin Li,et al.  Dual-signal amplification strategy for miRNA sensing with high sensitivity and selectivity by use of single Au nanowire electrodes. , 2019, Biosensors & bioelectronics.

[12]  N. Zhang,et al.  A Dual-Signal Twinkling Probe for Fluorescence-SERS Dual Spectrum Imaging and Detection of miRNA in Single Living Cell via Absolute Value Coupling of Reciprocal Signals. , 2019, ACS sensors.

[13]  Deming Kong,et al.  Highly Integrated, Biostable, and Self-Powered DNA Motor Enabling Autonomous Operation in Living Bodies. , 2019, Analytical chemistry.

[14]  Xiaolei Shi,et al.  Hepatocellular carcinoma-derived exosomal miRNA-21 contributes to tumor progression by converting hepatocyte stellate cells to cancer-associated fibroblasts , 2018, Journal of experimental & clinical cancer research : CR.

[15]  K. Omidfar,et al.  Simultaneous detection of gastric cancer-involved miR-106a and let-7a through a dual-signal-marked electrochemical nanobiosensor. , 2018, Biosensors & bioelectronics.

[16]  Chao Tian,et al.  Cellular imaging by targeted assembly of hot-spot SERS and photoacoustic nanoprobes using split-fluorescent protein scaffolds , 2018, Nature Communications.

[17]  Peng Miao,et al.  Triple Signal Amplification Strategy for Ultrasensitive Determination of miRNA Based on Duplex Specific Nuclease and Bridge DNA-Gold Nanoparticles. , 2018, Analytical chemistry.

[18]  Bang-Ce Ye,et al.  Rational Engineering of a Dynamic, Entropy-Driven DNA Nanomachine for Intracellular MicroRNA Imaging. , 2017, Angewandte Chemie.

[19]  Bo Tang,et al.  Fluorescence and SERS Imaging for the Simultaneous Absolute Quantification of Multiple miRNAs in Living Cells. , 2017, Analytical chemistry.

[20]  Qiang Li,et al.  Building Electromagnetic Hot Spots in Living Cells via Target-Triggered Nanoparticle Dimerization. , 2017, ACS nano.

[21]  Jiye Shi,et al.  Multicolor Gold-Silver Nano-Mushrooms as Ready-to-Use SERS Probes for Ultrasensitive and Multiplex DNA/miRNA Detection. , 2017, Analytical chemistry.

[22]  Lu Li,et al.  Fluorescence Imaging of Intracellular Telomerase Activity Using Enzyme-Free Signal Amplification. , 2016, Analytical chemistry.

[23]  Liguang Xu,et al.  Gold-Quantum Dot Core-Satellite Assemblies for Lighting Up MicroRNA In Vitro and In Vivo. , 2016, Small.

[24]  Ryan C Bailey,et al.  Emerging Biosensing Approaches for microRNA Analysis. , 2016, Analytical chemistry.

[25]  H. Ju,et al.  MicroRNA-Responsive Cancer Cell Imaging and Therapy with Functionalized Gold Nanoprobe. , 2015, ACS applied materials & interfaces.

[26]  Lingxin Chen,et al.  Upconversion fluorescence-SERS dual-mode tags for cellular and in vivo imaging. , 2014, ACS applied materials & interfaces.

[27]  M. Tewari,et al.  MicroRNA profiling: approaches and considerations , 2012, Nature Reviews Genetics.

[28]  S. Lowe,et al.  The microcosmos of cancer , 2012, Nature.

[29]  N. Halas,et al.  Detecting Chemically Modified DNA Bases Using Surface Enhanced Raman Spectroscopy. , 2011, The journal of physical chemistry letters.

[30]  M. Moskovits,et al.  Reversible Tuning of SERS Hot Spots with Aptamers , 2011, Advanced materials.

[31]  Edith A Perez,et al.  MicroRNA signatures: clinical biomarkers for the diagnosis and treatment of breast cancer. , 2011, Trends in molecular medicine.

[32]  Michael J. Campolongo,et al.  Building plasmonic nanostructures with DNA. , 2011, Nature nanotechnology.

[33]  Naomi J. Halas,et al.  Label-free detection of DNA hybridization using surface enhanced Raman spectroscopy. , 2010, Journal of the American Chemical Society.

[34]  Xiaoguang Fang,et al.  MicroRNAs: novel regulators in the hallmarks of human cancer. , 2009, Cancer letters.

[35]  P. Etchegoin,et al.  Single-molecule surface-enhanced Raman spectroscopy of nonresonant molecules. , 2009, Journal of the American Chemical Society.

[36]  Sanjiv S. Gambhir,et al.  Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy , 2009, Proceedings of the National Academy of Sciences.

[37]  Xiaohua Huang,et al.  Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. , 2008, Accounts of chemical research.

[38]  S. Nie,et al.  Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications. , 2008, Chemical Society reviews.

[39]  Stefano Volinia,et al.  MicroRNA expression profiling using microarrays , 2008, Nature Protocols.

[40]  R. Álvarez-Puebla,et al.  Surface-enhanced Raman scattering on colloidal nanostructures. , 2005, Advances in colloid and interface science.

[41]  Anand Gole,et al.  Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence. , 2005, Analytical chemistry.

[42]  Lin He,et al.  Nanoparticles for bioanalysis. , 2003, Current opinion in chemical biology.

[43]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[44]  May D. Wang,et al.  In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags , 2008, Nature Biotechnology.