A novel algorithm for calculating transition potential in cellular automata models of land-use/cover change

Despite recent advances in quantifying land-use/cover change (LUCC) transition potentials, transition rules are often not transparent and uncertainty is rarely made explicit. Here, we introduce DoTRules - a dictionary of trusted rules - as a transparent alternative to calculate transition potential in cellular automata models. Rules relate LUCC variables to the observed historical changes. Shannon entropy is calculated to assess the uncertainty of each rule, and the most trusted rules are used to project future LUCC. DoTRules produces rule-level uncertainty estimates, which can be mapped. In a case study of the Ahvaz region of Iran, the overall accuracy of LUCC simulation calibrated using DoTRules approach was very similar to simulations calibrated with the state-of-the-art random forest, but DoTRules provides a transparent approach where transition rule information and uncertainty can be readily accessed and interpreted. The results demonstrate that DoTRules has potential to derive new insights into LUCC processes.

[1]  C. Ku Incorporating spatial regression model into cellular automata for simulating land use change , 2016 .

[2]  Xiaobin Jin,et al.  Reconstruction of historical arable land use patterns using constrained cellular automata: A case study of Jiangsu, China , 2014 .

[3]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[4]  S. Al-kheder,et al.  Fuzzy inference guided cellular automata urban‐growth modelling using multi‐temporal satellite images , 2008, Int. J. Geogr. Inf. Sci..

[5]  André Faaij,et al.  Identifying a land use change cellular automaton by Bayesian data assimilation , 2014, Environ. Model. Softw..

[6]  Eric Koomen,et al.  Land-use modelling in planning practice , 2011 .

[7]  Ming-Hseng Tseng,et al.  A genetic algorithm rule-based approach for land-cover classification , 2008 .

[8]  Jonah Gamba,et al.  Simulating Urban Growth Using a Random Forest-Cellular Automata (RF-CA) Model , 2015, ISPRS Int. J. Geo Inf..

[9]  Peng Xie,et al.  A Local Land Use Competition Cellular Automata Model and Its Application , 2016, ISPRS Int. J. Geo Inf..

[10]  K. Rangzan,et al.  Change Detection, Mineralogy, Desertification Mapping in East and Northeast of Ahvaz City, SW Iran Using Combination of Remote Sensing Methods, GIS And ESAs Model , 2008 .

[11]  M. Aniya,et al.  Rural sustainability under threat in Zimbabwe - Simulation of future land use/cover changes in the Bindura district based on the Markov-cellular automata model , 2009 .

[12]  Mario Cools,et al.  Coupling agent-based, cellular automata and logistic regression into a hybrid urban expansion model (HUEM) , 2017 .

[13]  Florencio Ballestores,et al.  An integrated parcel-based land use change model using cellular automata and decision tree , 2012 .

[14]  Narumasa Tsutsumida,et al.  Measures of spatio-temporal accuracy for time series land cover data , 2015, Int. J. Appl. Earth Obs. Geoinformation.

[15]  Andy Liaw,et al.  Classification and Regression by randomForest , 2007 .

[16]  Suzana Dragicevic,et al.  Modeling urban growth using a variable grid cellular automaton , 2009, Comput. Environ. Urban Syst..

[17]  William Spataro,et al.  Parallel genetic algorithms for optimising cellular automata models of natural complex phenomena: An application to debris flows , 2006, Comput. Geosci..

[18]  Giorgos Mountrakis,et al.  Mapping per-pixel predicted accuracy of classified remote sensing images. , 2017 .

[19]  Xia Li,et al.  Cellular automata for simulating land use changes based on support vector machines , 2008, Comput. Geosci..

[20]  K. Islam,et al.  Modeling land use change using Cellular Automata and Artificial Neural Network: The case of Chunati Wildlife Sanctuary, Bangladesh , 2018 .

[21]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[22]  Philippe Trigano,et al.  Cellular automata model based on machine learning methods for simulating land use change , 2012, Proceedings Title: Proceedings of the 2012 Winter Simulation Conference (WSC).

[23]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[24]  Zhong Zheng,et al.  Forest fire spread simulating model using cellular automaton with extreme learning machine , 2017 .

[25]  Francisco Escobar,et al.  Participatory land use modelling, pathways to an integrated approach , 2014, Environ. Model. Softw..

[26]  Bing Yang,et al.  Flood risk zoning using a rule mining based on ant colony algorithm , 2016 .

[27]  Bin Jiang,et al.  A novel approach to the identification of urban sprawl patches based on the scaling of geographic space , 2011 .

[28]  Keith C. Clarke,et al.  A Self-Modifying Cellular Automaton Model of Historical Urbanization in the San Francisco Bay Area , 1997 .

[29]  Genaro Juárez Martínez,et al.  Complex Dynamics of Elementary Cellular Automata Emerging from Chaotic Rules , 2012, Int. J. Bifurc. Chaos.

[30]  Karim C. Abbaspour,et al.  A comparison of different rule-based statistical models for modeling geogenic groundwater contamination , 2010, Environ. Model. Softw..

[31]  Anthony Gar-On Yeh,et al.  Neural-network-based cellular automata for simulating multiple land use changes using GIS , 2002, Int. J. Geogr. Inf. Sci..

[32]  Luisa Liucci,et al.  The role of topography in the scaling distribution of landslide areas: A cellular automata modeling approach , 2017 .

[33]  Simon C. Barry,et al.  Agricultural commodity mapping for land use change assessment and environmental management: an application in the Murray–Darling Basin, Australia , 2009 .

[34]  Hichem Omrani,et al.  Land use changes modelling using advanced methods: Cellular automata and artificial neural networks. The spatial and explicit representation of land cover dynamics at the cross-border region scale , 2014 .

[35]  Keith C. Clarke,et al.  Cellular automata modeling approaches to forecast urban growth for adana, Turkey: A comparative approach , 2016 .

[36]  Nuria Gómez Blas,et al.  SELF-ORGANIZING MAP AND CELLULAR AUTOMATA COMBINED TECHNIQUE FOR ADVANCED MESH GENERATION IN URBAN AND ARCHITECTURAL DESIGN , 2007 .

[37]  Patrick Hostert,et al.  Uncovering land-use dynamics driven by human decision-making - A combined model approach using cellular automata and system dynamics , 2012, Environ. Model. Softw..

[38]  Mario Cools,et al.  Comparing support vector machines with logistic regression for calibrating cellular automata land use change models , 2018 .

[39]  He Jiang,et al.  A rule-based city modeling method for supporting district protective planning , 2017 .

[40]  Rich Caruana,et al.  An empirical comparison of supervised learning algorithms , 2006, ICML.

[41]  P. Waddell UrbanSim: Modeling Urban Development for Land Use, Transportation, and Environmental Planning , 2002 .

[42]  S. D. Gregorio,et al.  Simulating debris flows through a hexagonal cellular automata model: SCIDDICA S 3–hex , 2003 .

[43]  Richard Hewitt,et al.  Stable models for metastable systems? Lessons from sensitivity analysis of a Cellular Automata urban land use model , 2017, Comput. Environ. Urban Syst..

[44]  Huiran Han,et al.  Scenario Simulation and the Prediction of Land Use and Land Cover Change in Beijing, China , 2015 .

[45]  Guy Engelen,et al.  Cellular Automata as the Basis of Integrated Dynamic Regional Modelling , 1997 .

[46]  Abubakr A. A. Al-sharif,et al.  Modelling urban growth evolution and land-use changes using GIS based cellular automata and SLEUTH models: the case of Sana’a metropolitan city, Yemen , 2013, Environmental Earth Sciences.

[47]  Xiaoping Liu,et al.  Early warning of illegal development for protected areas by integrating cellular automata with neural networks. , 2013, Journal of environmental management.

[48]  Xiaoping Liu,et al.  Integrating ensemble-urban cellular automata model with an uncertainty map to improve the performance of a single model , 2015, Int. J. Geogr. Inf. Sci..

[49]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[50]  Brett A. Bryan,et al.  Land use mapping error introduces strongly-localised, scale-dependent uncertainty into land use and ecosystem services modelling , 2015 .

[51]  Wolfgang Kainz,et al.  Tracking dynamic land-use change using spatially explicit Markov Chain based on cellular automata: the case of Tehran , 2011 .

[52]  Sam J Royston,et al.  Application of rule based methods to predicting storm surge , 2012 .

[53]  D. Mahapatra,et al.  Analyzing Training Information From Random Forests for Improved Image Segmentation , 2014, IEEE Transactions on Image Processing.

[54]  Nitin Khanna,et al.  Assessing uncertainty dimensions in land-use change models: using swap and multiplicative error models for injecting attribute and positional errors in spatial data , 2014 .

[55]  F. Wu,et al.  Simulating urban encroachment on rural land with fuzzy-logic-controlled cellular automata in a geographical information system , 1998 .

[56]  Andreas Rienow,et al.  Supporting SLEUTH - Enhancing a cellular automaton with support vector machines for urban growth modeling , 2015, Comput. Environ. Urban Syst..

[57]  Russell G. Congalton,et al.  A review of assessing the accuracy of classifications of remotely sensed data , 1991 .

[58]  Alfred Stein,et al.  Use of the Bradley-Terry model to quantify association in remotely sensed images , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[59]  Özlem Uzuner,et al.  Machine learning and rule-based approaches to assertion classification. , 2009, Journal of the American Medical Informatics Association : JAMIA.

[60]  Daniel G. Brown,et al.  A review of current calibration and validation practices in land-change modeling , 2016, Environ. Model. Softw..

[61]  R. Pontius,et al.  Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment , 2011 .

[62]  K. G. Rao,et al.  A rule-based soil erosion model for a hilly catchment , 1999 .

[63]  Yongjiu Feng,et al.  Spatially-Explicit Simulation of Urban Growth through Self-Adaptive Genetic Algorithm and Cellular Automata Modelling , 2014 .

[64]  Henning Sten Hansen,et al.  Modelling land-use effects of future urbanization using cellular automata: An Eastern Danish case , 2013, Environ. Model. Softw..

[65]  Roger White,et al.  Cellular Automata and Fractal Urban Form: A Cellular Modelling Approach to the Evolution of Urban Land-Use Patterns , 1993 .

[66]  Valerie O. Snow,et al.  Modelling the manager: Representing rule-based management in farming systems simulation models , 2014, Environ. Model. Softw..

[67]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[68]  K. Bódis,et al.  Spatial and temporal dimensions of land use change in cross border region of Luxembourg. Development of a hybrid approach integrating GIS, cellular automata and decision learning tree models , 2016 .

[69]  Martin Paegelow,et al.  Inductive pattern-based land use/cover change models: A comparison of four software packages , 2014, Environ. Model. Softw..

[70]  John R. Jensen,et al.  Opening the black box of neural networks for remote sensing image classification , 2004 .

[71]  P. Waddell,et al.  UrbanSim 土地利用,交通および環境計画のための市街地開発モデリング , 2002 .

[72]  Karina Gibert,et al.  Knowledge discovery with clustering based on rules by states: A water treatment application , 2010, Environ. Model. Softw..

[73]  Eric Vaz,et al.  Predicting Urban Growth of the Greater Toronto Area - Coupling a Markov Cellular Automata with document meta-analysis , 2015 .

[74]  Mario Cools,et al.  Modelling built-up expansion and densification with multinomial logistic regression, cellular automata and genetic algorithm , 2018, Comput. Environ. Urban Syst..

[75]  Majid Shadman Roodposhti,et al.  Fuzzy Shannon Entropy: A Hybrid GIS-Based Landslide Susceptibility Mapping Method , 2016, Entropy.