LetDbe a (v,k,?)-difference set in a groupG. Assume thatGhas a normal subgroupNsuch thatG/Nis cyclic or nearly cyclic. Under the self-conjugacy assumption on exp(G/N), we shall give bounds on |N| and?. The theorem is applicable to a wider variety of parameters for groups, not necessarily abelian. These bounds exclude a (96, 20, 4)-difference set inZ/4Z×Z/8Z×Z/3ZorZ/2Z×Z/2Z×Z/8Z×Z/3Z, which were recently proved by Arasuet al. [1996, K. T. Arasu, J. A. Davis, J. Jedwab, S. L. Ma, and R. L. McFarland,in“Exponent Bounds for a Family of Abelian Difference Sets” (K. T. Arasu, J. F. Dillon, K. Harada, S. K. Sehgal, and R. L. Solomon, Eds.), pp. 129?143. DeGruyter Verlag, Berlin/New York].
[1]
E. Lander.
Symmetric Designs: An Algebraic Approach
,
1983
.
[2]
R. Turyn.
Character sums and difference sets.
,
1965
.
[3]
Siu Lun Ma,et al.
Exponent bounds for a family of abelian difference sets
,
1996
.
[4]
Douglas R Stinson,et al.
Contemporary design theory : a collection of surveys
,
1992
.
[5]
Robert L. McFarland,et al.
A Family of Difference Sets in Non-cyclic Groups
,
1973,
J. Comb. Theory A.
[6]
S. L. Ma,et al.
Polynomial addition sets and polynomial digraphs
,
1985
.