Numerical solution of Reynold's equation governing noncircular gas bearing system using radial basis function

In this paper, the static characteristics of two-lobe, three-lobe and four-lobe noncircular gas journal bearing systems are studied in detail. The Reynold’s equation governing the noncircular gas bearing systems are analyzed by using Radial Basis Functions (RBF). The solutions are obtained numerically by solving systems of algebraic equations. The equilibrium position of the rotor is obtained without using the trial and error method; which is the merit of our method.

[1]  Michael A. Golberg,et al.  Some recent results and proposals for the use of radial basis functions in the BEM , 1999 .

[2]  Cheng-Chi Wang Bifurcation analysis of an aerodynamic journal bearing system considering the effect of stationary herringbone grooves , 2007 .

[3]  I. Raeburn,et al.  A Semigroup Crossed Product Arising in Number Theory , 1999 .

[4]  F. Bakhtiari-Nejad,et al.  Effect of bearing number on non-linear dynamic behaviour of aerodynamic non-circular journal bearing systems , 2010 .

[5]  Siraj-ul-Islam,et al.  Application of meshfree collocation method to a class of nonlinear partial differential equations. , 2009 .

[6]  Nándor Sieben C*-crossed products by partial actions and actions of inverse semigroups , 1996, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[7]  Robert Schaback,et al.  Error estimates and condition numbers for radial basis function interpolation , 1995, Adv. Comput. Math..

[8]  R. Sinhasan,et al.  Comparative study of four gas-lubricated noncircular journal bearing configurations , 1983 .

[9]  E. Kansa Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates , 1990 .

[10]  M. M. Reddi Finite-Element Solution of the Incompressible Lubrication Problem , 1969 .

[11]  Mehdi Dehghan,et al.  A meshless method for numerical solution of the one-dimensional wave equation with an integral condition using radial basis functions , 2009, Numerical Algorithms.

[12]  A. Cheng,et al.  Error estimate, optimal shape factor, and high precision computation of multiquadric collocation method , 2007 .

[13]  K. Parand,et al.  Numerical solution of nonlinear Volterra-Fredholm-Hammerstein integral equations via collocation method based on radial basis functions , 2012, Appl. Math. Comput..

[14]  Guo Rui,et al.  Hybrid radial basis function/finite element modelling of journal bearing , 2008 .

[15]  E. Kansa,et al.  Exponential convergence and H‐c multiquadric collocation method for partial differential equations , 2003 .

[16]  Reza Rashidi,et al.  ROTOR MASS EFFECT ON NONLINEAR DYNAMIC BEHAVIOR OF AERODYNAMIC NONCIRCULAR JOURNAL BEARING SYSTEMS , 2010 .

[17]  Gregor Kosec,et al.  Radial basis function collocation method for the numerical solution of the two-dimensional transient nonlinear coupled Burgers’ equations , 2012 .

[18]  Marc A. Rieffel,et al.  Induced representations of C∗-algebras , 1974 .

[19]  L. Quinzani,et al.  Approximate analytical solution to Reynolds equation for finite length journal bearings , 2011 .

[20]  R. Rashidi,et al.  Bifurcation and nonlinear dynamic analysis of a rigid rotor supported by two-lobe noncircular gas-lubricated journal bearing system , 2010 .

[21]  W. Madych,et al.  Bounds on multivariate polynomials and exponential error estimates for multiquadratic interpolation , 1992 .

[22]  I. Dag,et al.  Numerical solutions of KdV equation using radial basis functions , 2008 .

[23]  W. R. Madych,et al.  Miscellaneous error bounds for multiquadric and related interpolators , 1992 .

[24]  B. Baxter,et al.  The Interpolation Theory of Radial Basis Functions , 2010, 1006.2443.

[25]  J. W. Lund,et al.  Calculation of the Dynamic Coefficients of a Journal Bearing, Using a Variational Approach , 1986 .

[26]  Ching-Shyang Chen,et al.  A numerical method for heat transfer problems using collocation and radial basis functions , 1998 .

[27]  P. Fillmore,et al.  Lectures on Operator Theory , 1999 .

[28]  NON-UNITAL SEMIGROUP CROSSED PRODUCTS , 2016 .

[29]  M. M. Reddi,et al.  Finite Element Solution of the Steady-State Compressible Lubrication Problem , 1970 .

[30]  I. Raeburn,et al.  Semigroup Crossed Products and the Toeplitz Algebras of Nonabelian Groups , 1996 .

[31]  Her-Terng Yau,et al.  Theoretical analysis of the non-linear behavior of a flexible rotor supported by herringbone grooved gas journal bearings , 2007 .

[32]  Maurice Godet,et al.  Hydrodynamic Lubrication: Bearings and Thrust Bearings , 1997 .

[33]  Hong Chen,et al.  Numerical solution of PDEs via integrated radial basis function networks with adaptive training algorithm , 2011, Appl. Soft Comput..

[34]  Reza Rashidi,et al.  Preload effect on nonlinear dynamic behavior of a rigid rotor supported by noncircular gas-lubricated journal bearing systems , 2010 .