SIMPEL: circuit model for photonic spike processing laser neurons.

We propose an equivalent circuit model for photonic spike processing laser neurons with an embedded saturable absorber—a simulation model for photonic excitable lasers (SIMPEL). We show that by mapping the laser neuron rate equations into a circuit model, SPICE analysis can be used as an efficient and accurate engine for numerical calculations, capable of generalization to a variety of different types of laser neurons with saturable absorber found in literature. The development of this model parallels the Hodgkin-Huxley model of neuron biophysics, a circuit framework which brought efficiency, modularity, and generalizability to the study of neural dynamics. We employ the model to study various signal-processing effects such as excitability with excitatory and inhibitory pulses, binary all-or-nothing response, and bistable dynamics.

[1]  J. Danckaert,et al.  Solitary and coupled semiconductor ring lasers as optical spiking neurons. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  Harald Haas,et al.  Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication , 2004, Science.

[3]  Arnaud Delorme,et al.  Spike-based strategies for rapid processing , 2001, Neural Networks.

[4]  Ad Aertsen,et al.  Stable propagation of synchronous spiking in cortical neural networks , 1999, Nature.

[5]  Paul R Prucnal,et al.  Simple nonlinear interferometer-based all-optical thresholder and its applications for optical CDMA. , 2007, Optics express.

[6]  Botond Szatmáry,et al.  Spike-Timing Theory of Working Memory , 2010, PLoS Comput. Biol..

[7]  C. Chen,et al.  Circuit Modeling of Carrier–Photon Dynamics in Composite-Resonator Vertical-Cavity Lasers , 2011, IEEE Journal of Quantum Electronics.

[8]  P. Bienstman,et al.  Excitation transfer between optically injected microdisk lasers. , 2013, Optics express.

[9]  Y Li,et al.  VCSEL-array-based angle-multiplexed optoelectronic crossbar interconnects. , 1996, Applied optics.

[10]  Di Liang,et al.  Design of phase-shifted hybrid silicon distributed feedback lasers. , 2011, Optics express.

[11]  J. Bowers,et al.  Electrically pumped hybrid AlGaInAs-silicon evanescent laser. , 2006, Optics express.

[12]  Benjamin Schrauwen,et al.  Toward optical signal processing using photonic reservoir computing. , 2008, Optics express.

[13]  Yue Tian,et al.  Photonic Neuromorphic Signal Processing and Computing , 2014 .

[14]  M. A. Fisher,et al.  Self-pulsations in vertical-cavity surface emitting lasers , 1995 .

[15]  Paul R. Prucnal,et al.  Photonic spike processing: ultrafast laser neurons and an integrated photonic network , 2014, ArXiv.

[16]  L. Abbott,et al.  Synaptic plasticity: taming the beast , 2000, Nature Neuroscience.

[17]  Daniel Brunner,et al.  Parallel photonic information processing at gigabyte per second data rates using transient states , 2013, Nature Communications.

[18]  Paul R Prucnal,et al.  Ultrafast all-optical implementation of a leaky integrate-and-fire neuron. , 2011, Optics express.

[19]  P. R. Prucnal,et al.  A Leaky Integrate-and-Fire Laser Neuron for Ultrafast Cognitive Computing , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[20]  R. Douglas,et al.  A silicon neuron , 1991, Nature.

[21]  H. Lin,et al.  VCSELs with monolithic coupling to internal horizontal waveguides using integrated diffraction gratings , 2004 .

[22]  T. Krauss,et al.  An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers , 2002 .

[23]  T. Detemple,et al.  On the semiconductor laser logarithmic gain-current density relation , 1993 .

[24]  Kevin L. Lear,et al.  Differential carrier lifetime in oxide-confined vertical cavity lasers obtained from electrical impedance measurements , 1999 .

[25]  Paul R. Prucnal,et al.  Graphene excitable laser for photonic spike processing , 2013, 2013 IEEE Photonics Conference.

[26]  L. Appeltant,et al.  Information processing using a single dynamical node as complex system , 2011, Nature communications.

[27]  Salvador Balle,et al.  Excitability and optical pulse generation in semiconductor lasers driven by resonant tunneling diode photo-detectors. , 2013, Optics express.

[28]  Andrew S. Cassidy,et al.  A million spiking-neuron integrated circuit with a scalable communication network and interface , 2014, Science.

[29]  Fumio Koyama,et al.  Recent advances in VCSEL photonics , 2006, 16th Opto-Electronics and Communications Conference.

[30]  Laurent Larger,et al.  Photonic nonlinear transient computing with multiple-delay wavelength dynamics. , 2012, Physical review letters.

[31]  Alexander Borst,et al.  Information theory and neural coding , 1999, Nature Neuroscience.

[32]  Paul R. Prucnal,et al.  Broadcast-and-weight interconnects for integrated distributed processing systems , 2014, 2014 Optical Interconnects Conference.

[33]  Paul R. Prucnal,et al.  Broadcast and Weight: An Integrated Network For Scalable Photonic Spike Processing , 2014, Journal of Lightwave Technology.

[34]  Jochen Triesch,et al.  Independent Component Analysis in Spiking Neurons , 2010, PLoS Comput. Biol..

[35]  A. Aertsen,et al.  Spiking activity propagation in neuronal networks: reconciling different perspectives on neural coding , 2010, Nature Reviews Neuroscience.

[36]  Srdjan Ostojic,et al.  Two types of asynchronous activity in networks of excitatory and inhibitory spiking neurons , 2014, Nature Neuroscience.

[37]  Di Liang,et al.  A distributed feedback silicon evanescent laser. , 2008, Optics express.

[38]  S. Kang,et al.  Transforming Tucker's linearization laser rate equations to a form that has a single solution regime , 1995 .

[39]  Antonio Hurtado,et al.  Investigation of vertical cavity surface emitting laser dynamics for neuromorphic photonic systems , 2012 .

[40]  A. N. Tait,et al.  The DREAM: An Integrated Photonic Thresholder , 2013, Journal of Lightwave Technology.

[41]  Omri Raday,et al.  A hybrid AlGaInAs-silicon evanescent waveguide photodetector. , 2007, Optics express.

[42]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[43]  D. J. Channin,et al.  Effect of gain saturation on injection laser switching , 1979 .

[44]  Jennifer Hasler,et al.  Finding a roadmap to achieve large neuromorphic hardware systems , 2013, Front. Neurosci..

[45]  R Kuszelewicz,et al.  Relative refractory period in an excitable semiconductor laser. , 2014, Physical review letters.

[46]  Sylvain Barbay,et al.  Excitability in a semiconductor laser with saturable absorber. , 2011, Optics letters.

[47]  An electrically pumped hybrid silicon evanescent amplifier , 2007, OFC/NFOEC 2007 - 2007 Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference.

[48]  L. Coldren,et al.  Diode Lasers and Photonic Integrated Circuits , 1995 .

[49]  Eugene M. Izhikevich,et al.  Which model to use for cortical spiking neurons? , 2004, IEEE Transactions on Neural Networks.

[50]  Paul R. Prucnal,et al.  Exploring excitability in graphene for spike processing networks , 2013, 2013 13th International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD).

[51]  L. Considine,et al.  High performance buried ridge DFB lasers monolithically integrated with butt coupled strip loaded passive waveguides for OEIC , 1990 .

[52]  Eugene M. Izhikevich,et al.  Simple model of spiking neurons , 2003, IEEE Trans. Neural Networks.

[53]  Paul R. Prucnal,et al.  An evanescent hybrid silicon laser neuron , 2013, 2013 IEEE Photonics Conference.

[54]  Sung-Mo Kang,et al.  Rate-equation-based laser models with a single solution regime , 1997 .

[55]  Henry Markram,et al.  Real-Time Computing Without Stable States: A New Framework for Neural Computation Based on Perturbations , 2002, Neural Computation.

[56]  Rodney S. Tucker,et al.  Circuit modeling of the effect of diffusion on damping in a narrow-stripe semiconductor laser , 1983 .

[57]  B Krauskopf,et al.  Excitability and coherence resonance in lasers with saturable absorber. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[58]  Eugene M. Izhikevich,et al.  Polychronization: Computation with Spikes , 2006, Neural Computation.

[59]  Dim-Lee Kwong,et al.  Taper couplers for coupling between laser and silicon waveguide with large allowable tolerance , 2008, SPIE OPTO.

[60]  Joni Dambre,et al.  Excitability in optically injected microdisk lasers with phase controlled excitatory and inhibitory response. , 2013, Optics express.

[61]  Rahul Sarpeshkar,et al.  Analog Versus Digital: Extrapolating from Electronics to Neurobiology , 1998, Neural Computation.

[62]  Thomas J. Naughton,et al.  Photonic neural networks , 2012, Nature Physics.