Partial tense MV-algebras and related functions

The main aim of this article is to extend our representation results on tense MV-algebras into a partial mapping setting. Tense MV-algebras are just MV-algebras with new unary operations G and H which express a universal time quantifiers and they were introduced by D. Diaconescu and G. Georgescu. (C) 2017 Elsevier B.V. All rights reserved.

[1]  Jan Paseka,et al.  On tense MV-algebras , 2013, Fuzzy Sets Syst..

[2]  D. Mundici,et al.  Algebraic Foundations of Many-Valued Reasoning , 1999 .

[3]  Jan Paseka,et al.  Operators on MV-algebras and their representations , 2013, Fuzzy Sets Syst..

[4]  Jan Paseka,et al.  Set Representation of Partial Dynamic De Morgan Algebras , 2016, 2016 IEEE 46th International Symposium on Multiple-Valued Logic (ISMVL).

[5]  Pascal Ostermann,et al.  Many-Valued Modal Propositional Calculi , 1988, Math. Log. Q..

[6]  J. Lukasiewicz,et al.  ON THREE-VALUED LOGIC , 2016 .

[7]  Carmen Chiriţă Tense θ-valued Moisil propositional logic , 2010, Int. J. Comput. Commun. Control.

[8]  Sylvia Pulmannová,et al.  Orthomodular structures as quantum logics , 1991 .

[9]  John P. Burgess,et al.  Basic Tense Logic , 1984 .

[10]  C. Chang,et al.  Algebraic analysis of many valued logics , 1958 .

[11]  Jan Paseka,et al.  Dynamic effect algebras and their representations , 2012, Soft Comput..

[12]  Ivan Chajda,et al.  Tense Operators on Basic Algebras , 2011 .

[13]  George Georgescu,et al.  Tense Operators on MV-Algebras and Lukasiewicz-Moisil Algebras , 2007, Fundam. Informaticae.

[14]  A. Figallo,et al.  Tense Operators on m-Symmetric Algebras , 2012, 1203.5374.

[15]  Bruno Teheux Algebraic approach to modal extensions of Łukasiewicz logics , 2009 .

[16]  D. Butnariu,et al.  Triangular Norm-Based Measures and Games with Fuzzy Coalitions , 1993 .

[17]  Ivan Chajda,et al.  Dynamic effect algebras , 2012 .

[18]  L. P. Belluce Semisimple Algebras of Infinite Valued Logic and Bold Fuzzy Set Theory , 1986, Canadian Journal of Mathematics.

[19]  Bruno Teheux,et al.  A Duality for the Algebras of a Łukasiewicz n + 1-valued Modal System , 2007, Stud Logica.

[20]  Bruno Teheux,et al.  Completeness results for many-valued \Lukasiewicz modal systems and relational semantics , 2006 .

[21]  Tomasz Kowalski,et al.  Varieties of Tense Algebras , 1998, Reports Math. Log..

[22]  Mirko Navara,et al.  The σ-complete MV-algebras which have enough states , 2005 .

[23]  Ivan Chajda,et al.  Algebraic axiomatization of tense intuitionistic logic , 2011 .