Ambiente inteligente de aprendizaje con manejo afectivo para Java

Resumen. En este articulo se presenta un ambiente inteligente de aprendizaje con manejo afectivo para Java llamado Java Sensei. El sistema esta disenado para ayudar a los estudiantes de programacion a reforzar distintas areas del conocimiento sobre Java. El sistema evalua aspectos como el estado cognitivo y afectivo del estudiante para tomar las estrategias de intervencion que realizara agente pedagogico, asi como realiza procesos de adaptabilidad por medio de un sistema de recomendaciones. El manejo pedagogico se realizo con una perspectiva Example-Tracing con manejo afectivo.

[1]  John Makhoul,et al.  Comparison of Algorithms for Automatically Building Example-Tracing Tutor Models , 2014, EDM.

[2]  Amy Soller,et al.  Supporting Social Interaction in an Intelligent Collaborative Learning System , 2001 .

[3]  Michael Wallis JavaTutor - A Remotely Collaborative, Real-Time Distributed Intelligent Tutoring System for Introductory Java Computer Programming - A Qualitative Analysis. , 2011 .

[4]  Kristy Elizabeth Boyer,et al.  The Additive Value of Multimodal Features for Predicting Engagement, Frustration, and Learning during Tutoring , 2014, ICMI.

[5]  Jesús Alcalá-Fdez,et al.  jFuzzyLogic: a Java Library to Design Fuzzy Logic Controllers According to the Standard for Fuzzy Control Programming , 2013, Int. J. Comput. Intell. Syst..

[6]  Arthur C. Graesser,et al.  Toward an Affect-Sensitive AutoTutor , 2007, IEEE Intelligent Systems.

[7]  Sean Owen,et al.  Mahout in Action , 2011 .

[8]  Anabela Gomes,et al.  Learning to program - difficulties and solutions , 2007 .

[9]  Peter Brusilovsky,et al.  User Models for Adaptive Hypermedia and Adaptive Educational Systems , 2007, The Adaptive Web.

[10]  Beverley Park Woolf,et al.  Building Intelligent Interactive Tutors , 2008 .

[11]  Scotty D. Craig,et al.  AutoTutor Detects and Responds to Learners Affective and Cognitive States , 2008 .

[12]  Eshwar Bachu,et al.  Enhancing the Metacognitive Skill of Novice Programmers Through Collaborative Learning , 2015 .

[13]  Vincent Aleven,et al.  The Cognitive Tutor Authoring Tools (CTAT): Preliminary Evaluation of Efficiency Gains , 2006, Intelligent Tutoring Systems.

[14]  Vincent Aleven,et al.  A New Paradigm for Intelligent Tutoring Systems: Example-Tracing Tutors , 2009, Int. J. Artif. Intell. Educ..

[15]  S. Geetha,et al.  Categorization of Data Mining Tools Based on Their Types , 2014 .

[16]  Antonija Mitrovic,et al.  J-Latte: a Constraint-Based Tutor for Java , 2009 .

[17]  Gregory John Michaelson,et al.  "Understanding Java Dynamic Thread Behaviour", in U. O'Reilly (Ed), Proceedings of 3rd Annual Conference of the LTSN Centre for Computer and Information Science , 2002 .

[18]  E. Vesterinen,et al.  Affective Computing , 2009, Encyclopedia of Biometrics.

[19]  Jean-Claude Falmagne,et al.  Knowledge spaces , 1998 .

[20]  Gary Michael Maranell,et al.  Scaling: A Sourcebook for Behavioral Scientists , 1974 .

[21]  郭頳 三维头像建模利器——FaceGen Modeller , 2003 .