PMMA: A key macromolecular component for dielectric low-κ hybrid inorganic–organic polymer films

Abstract Inorganic–organic composite and hybrid films find widespread applications for the development of functional materials. Polymer matrices with embedded inorganic fillers, nanoparticles or clusters are particularly appealing for optical, electronic, dielectric and magnetic applications. In particular, the development of hybrid layers with tailored dielectric properties represents a key issue in many technological fields. In this framework, poly(methyl methacrylate) (PMMA), due to its outstanding chemico-physical properties, represents a particularly suitable polymer component for the embedding of both microscopic and nanoscopic functional inorganic fillers. The wide use of such a matrix has to be traced back to the favourable combination of chemical and physical properties and easy processing. In this review, the main features and properties of PMMA, with a particular focus on dielectric ones, are firstly briefly described. Selected examples to illustrate the state-of-the art of its corresponding use as dielectric matrix are given and several examples are provided and surveyed. Finally, three case studies concerning PMMA-based hybrid films, produced for very different application fields, are described and discussed. The first example deals with the entrapment of micrometric zinc sulphide powders in PMMA, which acts as a host matrix for the electroluminescent particles in thick film-based Alternate Current Powder Electroluminescent Lamps (ACPELs). The second example describes the preparation of low- κ inorganic–organic hybrid dielectric films based on a PMMA–polyvinylchloride(PVC) blend and a hydrophobic silica powder functionalised on the surface with trimethylsiloxane groups (m-SiO 2 ). The composition of the investigated materials is [(PMMA) x (PVC) y ]/(m-SiO 2 ) z with z ranging from 0 to 38.3 wt% and x  =  y  = (100 −  z )/2. The third case concerns the use of PMMA as a matrix to embed zirconium oxoclusters through the formation of covalent bonds. The obtained material, characterised by a dielectric constant value remarkably lower (1.93 at 1 kHz and 25 °C) than in pristine PMMA (3.0 at 1 kHz and 25 °C), appears as very appealing for the development of microelectronic devices based on low dielectric constant polymer films such as, for instance, field-effect transistor (FET). These three cases are paradigms of three different approaches to composite and hybrid materials based on the embedding of particles in PMMA polymer matrix.

[1]  M. Prato,et al.  Carbon nanotubes in electron donor-acceptor nanocomposites. , 2005, Accounts of chemical research.

[2]  A. Douvas,et al.  Characterization of various low-k dielectrics for possible use in applications at temperatures below 160 °C , 2005 .

[3]  Ulrich S. Schubert,et al.  Can the Clusters Zr6O4(OH)4(OOCR)12 and [Zr6O4(OH)4(OOCR)12]2 Be Converted into Each Other? , 2006 .

[4]  G. Offergeld,et al.  The dielectric properties of solid polymers , 1958 .

[5]  J. Runt,et al.  Segmental and secondary dynamics in hydrogen-bonded poly(4-vinylphenol)/poly(methyl methacrylate) blends , 2004 .

[6]  B. Mallik,et al.  Photoinduced charge-transfer between ferrocene derivatives and chloroform molecules confined in poly(methyl methacrylate) thin films , 2000 .

[7]  Weng Hong Teh,et al.  Cross-linked PMMA as a low-dimensional dielectric sacrificial layer , 2003 .

[8]  F. Kremer,et al.  Dynamics of a polymer/diluent system as studied by dielectric spectroscopy and neutron scattering , 1992 .

[9]  E. Riande,et al.  Dipole moments and birefringence of polymers , 1992 .

[10]  M. Popall,et al.  Applications of hybrid organic–inorganic nanocomposites , 2005 .

[11]  Juntao Wu,et al.  Effect of inorganic phase on polymeric relaxation dynamics in PMMA/silica hybrids studied by dielectric analysis , 2004 .

[12]  J. Hedrick,et al.  Miscibility in organic/inorganic hybrid nanocomposites suitable for microelectronic applications: Comparison of Modulated differential scanning calorimetry and fluorescence spectroscopy , 2003 .

[13]  U. Schubert Organofunctional Metal Oxide Clusters as Building Blocks for Inorganic-Organic Hybrid Materials , 2004 .

[14]  K. Mazur More data about dielectric and electret properties of poly(methyl methacrylate) , 1997 .

[15]  C. Murray,et al.  Dielectric relaxations in ultrathin isotactic PMMA films and PS-PMMA-PS trilayer films , 2003, The European physical journal. E, Soft matter.

[16]  Steven C. Farmer,et al.  Photoluminescent Polymer/Quantum Dot Composite Nanoparticles , 2001 .

[17]  B. Stoll,et al.  Messungen der komplexen Dielektrizitätskonstante von Polyvinylchlorid bei Temperaturen oberhalb 100 °C im Frequenzbereich 10−3 Hz his 105 Hz , 1976 .

[18]  D. KieΒling Der Einflu\ der Bestrahlung auf das dielektrische Verhalten von Polyvinylchlorid , 1961 .

[19]  U. Schubert,et al.  Zirconium and hafnium oxoclusters as molecular building blocks for highly dispersed ZrO2 or HfO2 nanoparticles in silica thin films , 2005 .

[20]  T. Uemura,et al.  Preparation, Optical Spectroscopy, and Electrochemical Studies of Novel π-Conjugated Polymer-Protected Stable PbS Colloidal Nanoparticles in a Nonaqueous Solution , 2002 .

[21]  U. Schubert,et al.  Hydroxy carboxylate substituted oxozirconium clusters , 1999 .

[22]  J. Mano,et al.  Viscoelastic Behavior of Poly(methyl methacrylate) Networks with Different Cross-Linking Degrees , 2004 .

[23]  G. Maier Low dielectric constant polymers for microelectronics , 2001 .

[24]  M. Meyyappan,et al.  Transparent Poly(methyl methacrylate)/Single‐Walled Carbon Nanotube (PMMA/SWNT) Composite Films with Increased Dielectric Constants , 2005 .

[25]  Fred W. Billmeyer,et al.  Textbook Of Polymer Science , 1971 .

[26]  J. Tardy,et al.  PMMA–Ta2O5 bilayer gate dielectric for low operating voltage organic FETs , 2005 .

[27]  A. G. Fischer Electroluminescent Lines in ZnS Powder Particles II . Models and Comparison with Experience , 1963 .

[28]  Shing Chung Josh Wong,et al.  Electrical conductivity and dielectric properties of PMMA/expanded graphite composites , 2003 .

[29]  P. Judeinstein,et al.  Hybrid organic–inorganic materials: a land of multidisciplinarity , 1996 .

[30]  K. G. Sharp Inorganic/Organic Hybrid Materials , 1998 .

[31]  C. Lacabanne,et al.  Influence of Tacticity on the α Retardation Mode in Amorphous Poly(methyl methacrylate) , 2000 .

[32]  K. Ohta,et al.  Conformation-sensitive infrared bands and conformational characteristics of stereoregular poly(methyl methacrylate)s by variable-temperature FTIR spectroscopy , 2002 .

[33]  N. Brese Brightness degradation in electroluminescent ZnS:Cu , 1999 .

[34]  K. Fukao Dynamics in thin polymer films by dielectric spectroscopy , 2003, The European physical journal. E, Soft matter.

[35]  E. Tondello,et al.  Embedding of electroluminescent ZnS:Cu phosphors in PMMA matrix by polymerization of particle suspension in MMA monomer , 2004 .

[36]  Pedro Gómez-Romero,et al.  Functional Hybrid Materials , 2004 .

[37]  Memory in the aging of a polymer glass , 1999, cond-mat/9906162.

[38]  W. Reddish,et al.  Relation between the structure of polymers and their dynamic mechanical and electrical properties. Part I. Some alpha-substituted acrylic ester polymers , 1954 .

[39]  F. E. Karasz,et al.  Compatibility of Poly(2,6-dimethyl-1,4-phenylene oxide) (PPO)/Poly(styrene-co-4-chlorostyrene) Blends. 2. Dielectric Study of the Critical Composition Region , 1978 .

[40]  G. Strobl,et al.  The Physics of Polymers , 2009 .

[41]  F. Kremer,et al.  Molecular dynamics in thin films of isotactic poly(methyl methacrylate) , 2002, The European physical journal. E, Soft matter.

[42]  K. Horie,et al.  Definition of terms related to polymer blends, composites, and multiphase polymeric materials (IUPAC Recommendations 2004) , 2004 .

[43]  R. M. Fuoss,et al.  Electrical Properties of Solids. XIII. Polymethyl Acrylate, Polymethyl Methacrylate, Polymethyl-α-chloracrylate and Polychloroethyl Methacrylate1 , 1942 .

[44]  G. P. Johari,et al.  Mechanical spectrometry of the .beta.-relaxation in poly(methyl methacrylate) , 1991 .

[45]  J. Forrest,et al.  Thickness dependence of the dynamics in thin films of isotactic poly (methylmethacrylate) , 2003, The European physical journal. E, Soft matter.

[46]  S. Havriliak,et al.  Dynamics of the .beta. process in poly(vinyl chloride) , 1990 .

[47]  G. Ceccorulli,et al.  Effect of water on the relaxation spectrum of poly(methylmethacrylate) , 2001 .

[48]  J. Vernet,et al.  Dielectric Study of the Effect of a Sol-Gel Inorganic Network on Polymeric Relaxation Dynamics in Acrylic/Titania Hybrids , 2005 .

[49]  Shogo Saito,et al.  Glass transition in polymers , 1959 .

[50]  Joseph H. Flynn,et al.  Degradation of Polymers , 1962 .

[51]  Aging phenomena in poly(methyl methacrylate) thin films: memory and rejuvenation effects. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[52]  U. Schubert,et al.  Ring-opening metathesis polymerizations with norbornene carboxylate-substituted metal oxo clusters , 2006 .

[53]  E. Neagu,et al.  Interplay of surface and confinement effects on the molecular relaxation dynamics of nanoconfined poly(methyl methacrylate) chains , 2004, The European physical journal. E, Soft matter.

[54]  J. Tardy,et al.  Stability of pentacene organic field effect transistors with a low-k polymer/high-k oxide two-layer gate dielectric , 2006 .

[55]  Y. Ishida Studies on dielectric behavior of high polymers , 1960 .

[56]  Ulrich S. Schubert,et al.  Mono-, Di-, and Trimetallic Methacrylate-substituted Metal Oxide Clusters Derived from Hafnium Butoxide , 2003 .

[57]  T. Kotaka,et al.  Dielectric normal mode relaxation , 1993 .

[58]  Dielectric study of the transition temperature regions for poly (vinyl chloride) and some chlorinated poly(vinyl chlorides) , 2007 .

[59]  G. Kickelbick,et al.  Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale , 2003 .

[60]  U. Schubert,et al.  Inorganic-organic Hybrid Materials from poly(methylmethacrylate) crosslinked by an organically Modified oxozirconium cluster. Synthesis and characterization , 2002 .

[61]  M. Naoki Local mode of motions in amorphous solid. II. Configurational contributions in poly(vinyl chloride) , 1989 .

[62]  Richard W. Siegel,et al.  Mechanical properties of Al2O3/polymethylmethacrylate nanocomposites , 2002 .

[63]  Richard H. Harris,et al.  Flammability Properties of Polymer - Layered-Silicate Nanocomposites. Polypropylene and Polystyrene Nanocomposites , 2000 .

[64]  L. Akcelrud,et al.  Relaxations of Poly(methyl methacrylate) Probed by Covalently Attached Anthryl Groups , 2004 .

[65]  U. Schubert,et al.  Cluster-Crosslinked Inorganic-Organic Hybrid Polymers: Influence of the Cluster Type on the Materials Properties , 2002 .

[66]  F. Kremer,et al.  Dielectric study on the miscibility of binary polymer blends , 1990 .

[67]  Ayusman Sen,et al.  Molecular level ceramic/polymer composites. 1. Synthesis of polymer-trapped oxide nanoclusters of chromium and iron , 1990 .

[68]  P. Hedvig,et al.  Dielectric spectroscopy of polymers , 1977 .

[69]  J. Watts,et al.  The Use of Monochromated XPS to Evaluate Acid-Base Interactions at the PMMA/Oxidised Metal Interface , 1997 .

[70]  Temperature Effects on Molecular Alignments at the Surface of Ultrathin Films Studied by SHG and Fluorescence Techniques. , 1997 .

[71]  J. Simon,et al.  METALLOPHTHALOCYANINES. GAS SENSORS, RESISTORS AND FIELD EFFECT TRANSISTORS , 1998 .

[72]  K. Yamafuji,et al.  Studies on dielectric behaviors in a series of polyalkyl-methacrylates , 1961 .

[73]  H. Shindo,et al.  Dielectric properties of stereoregular poly(methyl methacrylates) , 1969 .

[74]  Á. Alegría,et al.  Dielectric relaxation in PMMA revisited , 1998 .

[75]  Takeo Furukawa,et al.  A New Class of Lithium Hybrid Gel Electrolyte Systems , 2004 .

[76]  B. Pukánszky,et al.  Interfaces and interphases in multicomponent materials: past, present, future , 2005 .

[77]  F. Kremer,et al.  INFLUENCE OF CONCENTRATION FLUCTUATIONS ON THE DIELECTRIC ALPHA-RELAXATION IN HOMOGENEOUS POLYMER MIXTURES , 1995 .

[78]  A. Tripathi,et al.  Dielectric-relaxation studies in polymethyl methacrylate-mica composites , 1991 .

[79]  Pressure and temperature dependence of structural relaxation dynamics in polymers: a thermodynamic interpretation , 2004 .

[80]  M. Scandola,et al.  THERMAL AND DIELECTRIC PROPERTIES OF BLENDS OF POLYMETHYLMETHACRYLATE AND ATACTIC POLY-3-HYDROXYBUTYRATE , 1999 .

[81]  F. Kremer,et al.  Broadband dielectric study on binary blends of bisphenol-A and tetramethylbisphenol-A polycarbonate , 1993 .

[82]  Ulrich S. Schubert,et al.  Variations in capping the Zr6O4(OH)4 cluster core: X-ray structure analyses of [Zr6(OH)4O4(OOC–CHCH2)10]2(μ-OOC–CHCH2)4 and Zr6(OH)4O4(OOCR)12(PrOH) (R = Ph, CMe = CH2) , 1999 .

[83]  C. Dimitrakopoulos,et al.  Organic Thin Film Transistors for Large Area Electronics , 2002 .

[84]  Dynamics of alpha and beta processes in thin polymer films: poly(vinyl acetate) and poly(methyl methacrylate). , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[85]  U. Schubert,et al.  Swelling behavior and thermal stability of poly(methylmethacrylate) crosslinked by the oxozirconium cluster Zr4O2(methacrylate)12 , 2001 .

[86]  H. Allcock,et al.  Synthesis of CdS nanoparticles in solution and in a polyphosphazene matrix , 1997 .

[87]  A. G. Fischer Electroluminescent Lines in ZnS Powder Particles I . Embedding Media and Basic Observations , 1962 .

[88]  I. M. Kalogeras Thermally stimulated currents of poly(methyl methacrylate): Comments on the molecular origin of a Debye‐type signal between the α‐ and β‐relaxation modes , 2004 .

[89]  A. Okada,et al.  The chemistry of polymer-clay hybrids , 1995 .

[90]  Irving Skeist,et al.  Handbook of adhesives , 1977 .

[91]  U. Schubert Polymers Reinforced by Covalently Bonded Inorganic Clusters , 2001 .

[92]  E. El Shafee,et al.  Effect of photodegradation on the β-relaxation in poly(methylmethacrylate) , 1996 .

[93]  V. Di Noto,et al.  Metal Oxoclusters as Molecular Building Blocks for the Development of Nanostructured Inorganic–Organic Hybrid Thin Films , 2006 .

[94]  A. Rao,et al.  Probing multi-walled nanotube/poly(methyl methacrylate) composites with ionizing radiation , 2004 .

[95]  B. Mallik,et al.  Observation of persistent photoconductivity at room temperature in ferrocene-doped poly(methyl methacrylate) thin films containing chloroform molecules , 2002 .

[96]  Y. Vygodskii,et al.  Dielectric spectroscopy of par-PMMA films , 2001 .

[97]  K. Chang,et al.  Synthesis and dielectric properties of poly(methyl methacrylate)–clay nanocomposite materials , 2005 .

[98]  Jeffrey W. Gilman,et al.  Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites , 1999 .

[99]  S. Peters Handbook of Composites , 1998 .

[100]  Doyeun Kim,et al.  Dielectric constant engineering with polymethylmethacrylate-graphite metastate composites in the terahertz region , 2006 .

[101]  U. Schubert,et al.  Methacrylate‐Substituted Mixed‐Metal Clusters Derived from Zigzag Chains of [ZrO8]/[ZrO7] and [TiO6] Polyhedra , 2001 .

[102]  Christine Boeffel,et al.  MOLECULAR NATURE OF THE BETA-RELAXATION IN POLY(METHYL METHACRYLATE) INVESTIGATED BY MULTIDIMENSIONAL NMR , 1994 .

[103]  V. Noto,et al.  Electrical spectroscopy studies of two new siloxanic proton conducting membranes , 2006 .

[104]  J. G. Ribelles,et al.  The β dielectric relaxation in some methacrylate polymers , 1985 .

[105]  L. Utracki,et al.  Dielectric studies of poly(vinyl chloride) , 1984 .

[106]  U. Schubert,et al.  Dielectric investigation of inorganic–organic hybrid film based on zirconium oxocluster-crosslinked PMMA , 2003 .

[107]  D. Davazoglou,et al.  Characterization of various insulators for possible use as low-k dielectrics deposited at temperatures below 200degreeC , 2005, Microelectron. Reliab..

[108]  Á. Alegría,et al.  The merging of the dielectric α- and β-relaxations in poly-(methyl methacrylate) , 1998 .

[109]  M. Sumita,et al.  Dielectric relaxation behavior of poly(methyl methacrylate) under high-pressure carbon dioxide , 2005 .

[110]  D.Yu. Godovski,et al.  Electron behavior and magnetic properties of polymer nanocomposites , 1995 .

[111]  Meng Yuedong,et al.  Plasma Induced Grafting of PMMA onto Titanium Dioxide Powder , 2005 .

[112]  K. S. Kim,et al.  Preparation and Characterization of Poly(Methyl Methacrylate) Coated TiO2 Nanoparticles , 2006 .

[113]  Jeong-Joo Kim,et al.  DIELECTRIC CHARACTERISTICS OF POLYMER-CERAMIC-METAL COMPOSITES FOR THE APPLICATION OF EMBEDDED PASSIVE DEVICES , 2005 .

[114]  Junkyung Kim,et al.  Effect of carbon nanotube pre-treatment on dispersion and electrical properties of melt mixed multi-walled carbon nanotubes / poly(methyl methacrylate) composites , 2005 .

[115]  F. E. Karasz,et al.  Comparison of polymer blends and copolymers by broadband dielectric analysis , 2001 .

[116]  M. Takeda,et al.  Terahertz time domain spectroscopy of complex dielectric constants of boson peaks , 2003 .

[117]  R. Laine,et al.  Silsesquioxanes as synthetic platforms. Thermally curable and photocurable inorganic/organic hybrids , 1996 .

[118]  U. Schubert,et al.  Ion-, photoelectron- and laser-assisted analytical investigation of nano-structured mixed HfO2-SiO2 and ZrO2-SiO2 thin films , 2005 .

[119]  Modifying the Electronic Character of Single‐Walled Carbon Nanotubes Through Anisotropic Polymer Interaction: A Raman Study , 2005 .