Unsupervised image segmentation using a simple MRF model with a new implementation scheme

A simple Markov random field model with a new implementation scheme is proposed for unsupervised image segmentation based on image features. The traditional two-component MRF model for segmentation requires training data to estimate necessary model parameters and is thus unsuitable for unsupervised segmentation. The new implementation scheme solves this problem by introducing a function-based weighting parameter between the two components. Using this method, the simple MRF model is able to automatically estimate model parameters and produce accurate unsupervised segmentation results. Experiments demonstrate that the proposed algorithm is able to segment various types of images (gray scale, color, texture) and achieves an improvement over the traditional method.

[1]  Gerhard Winkler,et al.  Image analysis, random fields and dynamic Monte Carlo methods: a mathematical introduction , 1995, Applications of mathematics.

[2]  Wilson S. Geisler,et al.  Multichannel Texture Analysis Using Localized Spatial Filters , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Xiaobo Li,et al.  Adaptive image region-growing , 1994, IEEE Trans. Image Process..

[5]  Bhabatosh Chanda,et al.  On edge and line linking with connectionist models , 1994, IEEE Trans. Syst. Man Cybern..

[6]  Alberto Del Bimbo,et al.  Image retrieval by color semantics , 1999, Multimedia Systems.

[7]  Andrew R. Webb,et al.  Statistical Pattern Recognition , 1999 .

[8]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[9]  Dina E. Melas,et al.  Double Markov random fields and Bayesian image segmentation , 2002, IEEE Trans. Signal Process..

[10]  Jun Zhang The mean field theory in EM procedures for Markov random fields , 1992, IEEE Trans. Signal Process..

[11]  Joan S. Weszka,et al.  A survey of threshold selection techniques , 1978 .

[12]  Stan Z. Li,et al.  Markov Random Field Modeling in Computer Vision , 1995, Computer Science Workbench.

[13]  Patrick Pérez,et al.  Sonar image segmentation using an unsupervised hierarchical MRF model , 2000, IEEE Trans. Image Process..

[14]  A. Ravishankar Rao,et al.  Identifying High Level Features of Texture Perception , 1993, CVGIP Graph. Model. Image Process..

[15]  Rod Cook,et al.  Optimal approach to SAR image segmentation and classification , 2000 .

[16]  David A. Clausi,et al.  Advanced Gaussian MRF rotation-invariant texture features for classification of remote sensing imagery , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[17]  Anil K. Jain,et al.  Unsupervised texture segmentation using Gabor filters , 1990, 1990 IEEE International Conference on Systems, Man, and Cybernetics Conference Proceedings.

[18]  Charles A. Bouman,et al.  Multiple Resolution Segmentation of Textured Images , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Phil Brodatz,et al.  Textures: A Photographic Album for Artists and Designers , 1966 .

[20]  Charles A. Bouman,et al.  A multiscale random field model for Bayesian image segmentation , 1994, IEEE Trans. Image Process..

[21]  Josef Kittler,et al.  Region growing: a new approach , 1998, IEEE Trans. Image Process..

[22]  Bayya Yegnanarayana,et al.  Segmentation of Gabor-filtered textures using deterministic relaxation , 1996, IEEE Trans. Image Process..

[23]  Chee Sun Won,et al.  Unsupervised segmentation of noisy and textured images using Markov random fields , 1992, CVGIP Graph. Model. Image Process..

[24]  Anil K. Jain,et al.  Statistical Pattern Recognition: A Review , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Stan Z. Li,et al.  Markov Random Field Modeling in Image Analysis , 2001, Computer Science Workbench.

[26]  David A. Clausi,et al.  Designing Gabor filters for optimal texture separability , 2000, Pattern Recognit..

[27]  Anil K. Jain,et al.  A self-organizing network for hyperellipsoidal clustering (HEC) , 1996, IEEE Trans. Neural Networks.

[28]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[29]  David A. Clausi,et al.  K-means Iterative Fisher (KIF) unsupervised clustering algorithm applied to image texture segmentation , 2002, Pattern Recognit..

[30]  Donald Geman,et al.  Boundary Detection by Constrained Optimization , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  P.K Sahoo,et al.  A survey of thresholding techniques , 1988, Comput. Vis. Graph. Image Process..

[32]  Rama Chellappa,et al.  Multiresolution Gauss-Markov random field models for texture segmentation , 1997, IEEE Trans. Image Process..

[33]  Emile H. L. Aarts,et al.  Simulated Annealing: Theory and Applications , 1987, Mathematics and Its Applications.

[34]  Xiaolin Wu,et al.  Adaptive Split-and-Merge Segmentation Based on Piecewise Least-Square Approximation , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[35]  Peter E. Hart,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[36]  Glenn Healey,et al.  Markov Random Field Models for Unsupervised Segmentation of Textured Color Images , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[37]  Simon A. Barker Image segmentation using Markov random field models , 1998 .

[38]  David B. Cooper,et al.  Simple Parallel Hierarchical and Relaxation Algorithms for Segmenting Noncausal Markovian Random Fields , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[39]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.