Cahn–Hilliard theory with triple-parabolic free energy. I. Nucleation and growth of a stable crystalline phase

Nucleation and growth of a stable crystalline phase are described in the framework of a single-order-parameter Cahn–Hilliard theory. A piecewise parabolic free energy-order parameter relationship composed of three parabolas is adopted with a negative curvature coefficient (λ1) for the central part. An analytical solution of the problem is presented. The work of formation of critical fluctuations, the temperature coefficient of their interfacial free energy, and the Tolman length are found to be sensitive to the value of λ1, whereas the steady-state growth rate is rather insensitive. It is demonstrated that for systems of known free-energy order parameter relationship, the triple-parabola approximation is useful in obtaining qualitative and semiquantitative results for nucleation and growth rates.

[1]  R. Tolman The Effect of Droplet Size on Surface Tension , 1949 .

[2]  T. Ray,et al.  Nucleation near the spinodal in long-range Ising models , 1990 .

[3]  H. Löwen,et al.  An exactly soluble model for interfacial kinetics , 1990 .

[4]  A. D. J. Haymet,et al.  The ice/water interface: A molecular dynamics simulation study , 1988 .

[5]  Vicente A Talanquer,et al.  Crystal nucleation in the presence of a metastable critical point , 1998 .

[6]  J. Q. Broughton,et al.  Crystallization of fcc (111) and (100) crystal‐melt interfaces: A comparison by molecular dynamics for the Lennard‐Jones system , 1988 .

[7]  Harold W. Wilson B.A. D.Sc.,et al.  XX. On the velocity of solidification and viscosity of super-cooled liquids , 1900 .

[8]  J. Q. Broughton,et al.  Crystallization Rates of a Lennard-Jones Liquid , 1982 .

[9]  G. R. Wood,et al.  Homogeneous Nucleation Kinetics of Ice from Water , 1970 .

[10]  Ryo Kobayashi,et al.  A Numerical Approach to Three-Dimensional Dendritic Solidification , 1994, Exp. Math..

[11]  D. Oxtoby,et al.  The effect of density change on crystal growth rates from the melt , 1992 .

[12]  K. Kelton Crystal Nucleation in Liquids and Glasses , 1991 .

[13]  Farid F. Abraham,et al.  The fcc (111) and (100) crystal–melt interfaces: A comparison by molecular dynamics simulation , 1981 .

[14]  S. Hardy A grain boundary groove measurement of the surface tension between ice and water , 1977 .

[15]  Carey K. Bagdassarian,et al.  Crystal nucleation and growth from the undercooled liquid: A nonclassical piecewise parabolic free‐energy model , 1994 .

[16]  Daan Frenkel,et al.  COMPUTER-SIMULATION STUDY OF FREE-ENERGY BARRIERS IN CRYSTAL NUCLEATION , 1992 .

[17]  Sam R. Coriell,et al.  Relative roles of heat transport and interface rearrangement rates in the rapid growth of crystals in undercooled melts , 1982 .

[18]  John E. Hilliard,et al.  Free Energy of a Nonuniform System. III. Nucleation in a Two‐Component Incompressible Fluid , 1959 .

[19]  Kapusta,et al.  Nucleation of relativistic first-order phase transitions. , 1992, Physical review. D, Particles and fields.

[20]  T. W. Newton,et al.  A Spectrophotometric Study of the Complex Formed between Cerous and Sulfate Ions1 , 1953 .

[21]  George H. Gilmer,et al.  Molecular dynamics investigation of the crystal–fluid interface. I. Bulk properties , 1983 .

[22]  Peter Harrowell,et al.  Density-functional theory of the kinetics of crystallization of hard-sphere suspensions: Single conserved order parameter , 1997 .

[23]  L. Gránásy,et al.  Transient nucleation in oxide glasses: The effect of interface dynamics and subcritical cluster population , 1999 .

[24]  B. Chalmers,et al.  Growth Rate of Ice Dendrites in Aqueous Solutions , 1966 .

[25]  D. Oxtoby,et al.  On the interaction between order and a moving interface: Dynamical disordering and anisotropic growth rates , 1987 .

[26]  David Turnbull,et al.  Kinetics of Solidification of Supercooled Liquid Mercury Droplets , 1952 .

[27]  M. Iwamatsu The surface tension and Tolman's length of a drop , 1994 .

[28]  John S. Rowlinson,et al.  Molecular Theory of Capillarity , 1983 .

[29]  A. L. Greer,et al.  Transient nucleation effects in glass formation , 1986 .

[30]  Pieter Rein ten Wolde,et al.  Numerical calculation of the rate of crystal nucleation in a Lennard‐Jones system at moderate undercooling , 1996 .

[31]  C. Suryanarayana,et al.  Rapidly Quenched Metals , 1980 .

[32]  J. Barrett A comparison of semi-empirical density functional theories for nucleation , 1997 .

[33]  A. Gast,et al.  On the solid–fluid interface of adhesive spheres , 1993 .

[34]  P. Clancy,et al.  The kinetics of crystal growth and dissolution from the melt in Lennard‐Jones systems , 1995 .

[35]  M. Fisher,et al.  Curvature corrections to the surface tension of fluid drops: Landau theory and a scaling hypothesis , 1984 .

[36]  L. Gránásy Semiempirical van der Waals/Cahn–Hilliard theory: Size dependence of the Tolman length , 1998 .

[37]  P. Hohenberg,et al.  Theory of Dynamic Critical Phenomena , 1977 .

[38]  László Gránásy,et al.  DIFFUSE INTERFACE THEORY FOR HOMOGENEOUS VAPOR CONDENSATION , 1996 .

[39]  L. Gránásy,et al.  KINETICS OF WOLLASTONITE NUCLEATION IN CAO.SIO2 GLASS , 1998 .

[40]  D. Oxtoby,et al.  A molecular theory of crystal nucleation from the melt , 1984 .