Iron-rich Metal-poor Stars and the Astrophysics of Thermonuclear Events Observationally Classified as Type Ia Supernovae. I. Establishing the Connection

The progenitor systems and explosion mechanisms responsible for the thermonuclear events observationally classified as Type Ia supernovae are uncertain and difficult to uniquely constrain using traditional observations of Type Ia supernova host galaxies, progenitors, light curves, and remnants. For the subset of thermonuclear events that are prolific producers of iron, we use published theoretical nucleosynthetic yields to identify a set of elemental abundance ratios infrequently observed in metal-poor stars but shared across a range of progenitor systems and explosion mechanisms: [Na, Mg, Co/Fe] < 0. We label stars with this abundance signature “iron-rich metal-poor,” or IRMP stars. We suggest that IRMP stars formed in environments dominated by thermonuclear nucleosynthesis and consequently that their elemental abundances can be used to constrain both the progenitor systems and explosion mechanisms responsible for thermonuclear explosions. We identify three IRMP stars in the literature and homogeneously infer their elemental abundances. We find that the elemental abundances of BD +80 245, HE 0533–5340, and SMSS J034249.53–284216.0 are best explained by the (double) detonations of sub-Chandrasekhar-mass CO white dwarfs. If our interpretation of IRMP stars is accurate, then they should be very rare in globular clusters and more common in the Magellanic Clouds and dwarf spheroidal galaxies than in the Milky Way’s halo. We propose that future studies of IRMP stars will quantify the relative occurrences of different thermonuclear event progenitor systems and explosion mechanisms.

[1]  A. Ji,et al.  The Chemical Composition of Extreme-velocity Stars , 2022, The Astronomical Journal.

[2]  J. Lothringer,et al.  Evidence that the Hot Jupiter WASP-77 A b Formed Beyond Its Parent Protoplanetary Disk’s H2O Ice Line , 2022, The Astronomical Journal.

[3]  E. Bravo,et al.  Near-Chandrasekhar-mass Type Ia Supernovae from the Double-degenerate Channel , 2021, The Astrophysical Journal.

[4]  J. Simon,et al.  The Most Metal-poor Stars in the Magellanic Clouds Are r-process Enhanced , 2021, The Astronomical Journal.

[5]  James E. Lawler,et al.  Linemake: An Atomic and Molecular Line List Generator , 2021, Research Notes of the AAS.

[6]  Jeff Reback,et al.  pandas-dev/pandas: Pandas 1.2.0 , 2020 .

[7]  J. Portell,et al.  Gaia Early Data Release 3 , 2020, Astronomy & Astrophysics.

[8]  A. Ji,et al.  The Most Metal-poor Stars in the Inner Bulge , 2020, The Astronomical Journal.

[9]  P. Bonifacio,et al.  Facing problems in the determination of stellar temperatures and gravities: Galactic globular clusters , 2020, Astronomy & Astrophysics.

[10]  E. Grebel,et al.  Neutron-capture elements in dwarf galaxies , 2019, Astronomy & Astrophysics.

[11]  C. Wolf,et al.  SkyMapper Southern Survey: Second data release (DR2) , 2019, Publications of the Astronomical Society of Australia.

[12]  Johannes L. Schönberger,et al.  SciPy 1.0: fundamental algorithms for scientific computing in Python , 2019, Nature Methods.

[13]  F. Timmes,et al.  Modules for Experiments in Stellar Astrophysics (MESA): Pulsating Variable Stars, Rotation, Convective Boundaries, and Energy Conservation , 2019, The Astrophysical Journal Supplement Series.

[14]  C. Fabricius,et al.  Gaia Data Release 2 , 2018, Astronomy & Astrophysics.

[15]  K. Nomoto,et al.  Single Degenerate Models for Type Ia Supernovae: Progenitor’s Evolution and Nucleosynthesis Yields , 2018, Space Science Reviews.

[16]  A. Chieffi,et al.  Chemical evolution with rotating massive star yields - I. The solar neighbourhood and the s-process elements , 2018, 1802.02824.

[17]  A. Piro,et al.  Exploring the Carbon Simmering Phase: Reaction Rates, Mixing, and the Convective Urca Process , 2017, 1711.04780.

[18]  F. Timmes,et al.  Modules for Experiments in Stellar Astrophysics ( ): Convective Boundaries, Element Diffusion, and Massive Star Explosions , 2017, 1710.08424.

[19]  Adrian M. Price-Whelan,et al.  Gala: A Python package for galactic dynamics , 2017, J. Open Source Softw..

[20]  Samuel Rathmanner,et al.  Using Boosted Regression Trees and Remotely Sensed Data to Drive Decision-Making , 2017 .

[21]  C. Kobayashi,et al.  Constraining cosmic scatter in the Galactic halo through a differential analysis of metal-poor stars , 2017, 1709.03750.

[22]  Astronomy,et al.  Observing the metal-poor solar neighbourhood: a comparison of galactic chemical evolution predictions*† , 2017, 1705.03642.

[23]  W. Aoki,et al.  Stellar Abundances for Galactic Archaeology Database IV - Compilation of Stars in Dwarf Galaxies , 2017, 1703.10009.

[24]  H. W. Zhang,et al.  SYSTEMATIC NON-LTE STUDY OF THE −2.6 ≤ [Fe/H] ≤ 0.2 F AND G DWARFS IN THE SOLAR NEIGHBORHOOD. II. ABUNDANCE PATTERNS FROM Li TO Eu , 2016, 1610.00193.

[25]  W. Hillebrandt,et al.  Three-dimensional simulations of gravitationally confined detonations compared to observations of SN 1991T , 2016, 1606.00089.

[26]  Dean M. Townsley,et al.  MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA): BINARIES, PULSATIONS, AND EXPLOSIONS , 2015, 1506.03146.

[27]  N. Feautrier,et al.  Mg line formation in late-type stellar atmospheres - I. The model atom , 2015, 1504.07593.

[28]  Timothy D. Morton,et al.  isochrones: Stellar model grid package , 2015 .

[29]  M. Fink,et al.  The white dwarf's carbon fraction as a secondary parameter of Type Ia supernovae , 2014, 1409.2866.

[30]  M. T. Maia,et al.  The Solar Twin Planet Search. I. Fundamental parameters of the stellar sample , 2014, 1408.4130.

[31]  D. Kelson,et al.  A SEARCH FOR STARS OF VERY LOW METAL ABUNDANCE. VI. DETAILED ABUNDANCES OF 313 METAL-POOR STARS , 2014, 1403.6853.

[32]  Filippo Mannucci,et al.  Observational Clues to the Progenitors of Type Ia Supernovae , 2013, 1312.0628.

[33]  W. Aoki,et al.  The Stellar Abundances for Galactic Archaeology (SAGA) Database – III. Analysis of enrichment histories for elements and two modes of star formation during the early evolution of the Milky Way , 2013, 1309.3430.

[34]  M. H. Montgomery,et al.  MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA): PLANETS, OSCILLATIONS, ROTATION, AND MASSIVE STARS , 2013, 1301.0319.

[35]  Stuart A. Sim,et al.  Three-dimensional delayed-detonation models with nucleosynthesis for Type Ia supernovae , 2012, 1211.3015.

[36]  W. Hillebrandt,et al.  Violent mergers of nearly equal-mass white dwarf as progenitors of subluminous Type Ia supernovae , 2011, 1102.1354.

[37]  F. Roepke,et al.  Type Ia supernova diversity: white dwarf central density as a secondary parameter in three-dimensional delayed detonation models , 2010, 1012.4929.

[38]  W. Aoki,et al.  The Stellar Abundances for Galactic Archaeology (SAGA) data base - II. Implications for mixing and nucleosynthesis in extremely metal-poor stars and chemical enrichment of the Galaxy , 2010, 1010.6272.

[39]  Frank Timmes,et al.  MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA) , 2010, 1009.1622.

[40]  Martin G. Cohen,et al.  THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.

[41]  William J. Schuster,et al.  Two distinct halo populations in the solar neighborhood - Evidence from stellar abundance ratios and kinematics , 2010, 1002.4514.

[42]  W. Hillebrandt,et al.  Sub-luminous type Ia supernovae from the mergers of equal-mass white dwarfs with mass ∼0.9M⊙ , 2009, Nature.

[43]  E. Tolstoy,et al.  Star-Formation Histories, Abundances, and Kinematics of Dwarf Galaxies in the Local Group , 2009, 0904.4505.

[44]  E. A. Den Hartog,et al.  NEW RARE EARTH ELEMENT ABUNDANCE DISTRIBUTIONS FOR THE SUN AND FIVE r-PROCESS-RICH VERY METAL-POOR STARS , 2009, 0903.1623.

[45]  F. Feroz,et al.  MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics , 2008, 0809.3437.

[46]  K. Sorai,et al.  Stellar Abundances for the Galactic Archeology (SAGA) Database — Compilation of the Characteristics of Known Extremely Metal-Poor Stars , 2008, 0806.3697.

[47]  A. Piro,et al.  Convection during the Late Stages of Simmering in Type Ia Supernovae , 2008, 0801.1321.

[48]  A. Piro The Internal Shear of Type Ia Supernova Progenitors During Accretion and Simmering , 2008, 0801.1107.

[49]  A. Piro,et al.  Neutronization during Type Ia Supernova Simmering , 2007, 0710.1600.

[50]  Sung-Chul Yoon,et al.  Remnant evolution after a carbon–oxygen white dwarf merger , 2007, 0704.0297.

[51]  J. Niemeyer,et al.  Delayed detonations in full-star models of type Ia supernova explosions , 2007, astro-ph/0703378.

[52]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[53]  H. W. Zhang,et al.  Chemical abundances of very metal-poor stars , 2005 .

[54]  Santiago,et al.  The Ital-FLAMES survey of the Sagittarius dwarf spheroidal galaxy - I. Chemical abundances of bright RGB stars , 2005, astro-ph/0506622.

[55]  Astrophysics,et al.  Type Ia Supernova Explosion: Gravitationally Confined Detonation , 2004, astro-ph/0405163.

[56]  Stephen A. Shectman,et al.  The Magellan Telescopes , 2003, SPIE Astronomical Telescopes + Instrumentation.

[57]  M. Shetrone,et al.  VLT/UVES Abundances in Four Nearby Dwarf Spheroidal Galaxies. I. Nucleosynthesis and Abundance Ratios , 2002, astro-ph/0211167.

[58]  A. Boesgaard,et al.  Abundances from High-Resolution Spectra of Kinematically Interesting Halo Stars , 2002 .

[59]  F. Ochsenbein,et al.  The VizieR database of astronomical catalogues , 2000, astro-ph/0002122.

[60]  F. Bonnarel,et al.  The SIMBAD astronomical database. The CDS reference database for astronomical objects , 2000, astro-ph/0002110.

[61]  I. Hook,et al.  Measurements of Ω and Λ from 42 High-Redshift Supernovae , 1998, astro-ph/9812133.

[62]  A. Riess,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[63]  A. McWilliam Barium Abundances in Extremely Metal-poor Stars , 1998 .

[64]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[65]  P. Nugent,et al.  Synthetic Spectra of Hydrodynamic Models of Type Ia Supernovae , 1996, astro-ph/9612044.

[66]  S. Woosley,et al.  The Evolution and Explosion of Massive Stars. II. Explosive Hydrodynamics and Nucleosynthesis , 1995 .

[67]  S. White,et al.  The Structure of cold dark matter halos , 1995, astro-ph/9508025.

[68]  Phillip J. MacQueen,et al.  THE HIGH-RESOLUTION CROSS-DISPERSED ECHELLE WHITE PUPIL SPECTROMETER OF THE MCDONALD OBSERVATORY 2.7-M TELESCOPE , 1995 .

[69]  M. Couture,et al.  HIRES: the high-resolution echelle spectrometer on the Keck 10-m Telescope , 1994, Astronomical Telescopes and Instrumentation.

[70]  S. Woosley,et al.  Sub-Chandrasekhar mass models for Type IA supernovae , 1994 .

[71]  M. Phillips,et al.  The Absolute Magnitudes of Type IA Supernovae , 1993 .

[72]  R. Lathe Phd by thesis , 1988, Nature.

[73]  S. Woosley,et al.  Models for Type I Supernova. I. Detonations in White Dwarfs , 1986 .

[74]  K. Nomoto,et al.  Accreting white dwarf models for type I supernovae. III. Carbon deflagration supernovae , 1984 .

[75]  R. Webbink Double white dwarfs as progenitors of R Coronae Borealis stars and type I supernovae , 1984 .

[76]  K. Nomoto Accreting white dwarf models for type 1 supernovae. II - Off-center detonation supernovae , 1982 .

[77]  K. Nomoto Accreting white dwarf models for type I supernovae. I. Presupernova evolution and triggering mechanisms , 1981 .

[78]  J. Whelan,et al.  Binaries and Supernovae of Type I , 1973 .

[79]  R. Minkowski,et al.  Supernovae and Supernova Remnants , 1964 .

[80]  Jennifer Werfel Handbook Of Isotopes In The Cosmos , 2016 .

[81]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .