A Declustering Criterion for Feature Extraction in Pattern Recognition

A feature extraction technique based on a new criterion for "declustering" is presented. Declustering occurs when sample vectors from one pattern class form a densely packed point constellation, or cluster, in feature space while vectors from another class do not form a cluster but instead array themselves as outliers. Features chosen to optimize the declustering criterion enhance class separation and are robust over a wide range of measurement statistics.

[1]  Stanley C. Fralick,et al.  Nonparametric Bayes-risk estimation , 1971, IEEE Trans. Inf. Theory.

[2]  Bruce A. Eisenstein,et al.  Signal processing for feature extraction and pattern recognition , 1976, ICASSP.

[3]  M. Ziskin,et al.  Computer Diagnosis of Breast Thermograms. , 1975, Radiology.

[4]  Edward A. Patrick,et al.  Nonparametric feature selection , 1969, IEEE Trans. Inf. Theory.

[5]  Godfried T. Toussaint,et al.  Bibliography on estimation of misclassification , 1974, IEEE Trans. Inf. Theory.

[6]  John W. Sammon,et al.  An Optimal Set of Discriminant Vectors , 1975, IEEE Transactions on Computers.

[7]  Anthony N. Mucciardi,et al.  A Comparison of Seven Techniques for Choosing Subsets of Pattern Recognition Properties , 1971, IEEE Transactions on Computers.

[8]  Keinosuke Fukunaga,et al.  Application of the Karhunen-Loève Expansion to Feature Selection and Ordering , 1970, IEEE Trans. Computers.

[9]  George S. Sebestyen,et al.  Decision-making processes in pattern recognition , 1962 .

[10]  R. Meidan A generalized Karhunen-Loève expansion , 1977 .

[11]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[12]  King-Sun Fu,et al.  On the generalized Karhunen-Loeve expansion (Corresp.) , 1967, IEEE Trans. Inf. Theory.

[13]  George S Sebestyen,et al.  Decision-making processes in pattern recognition (ACM monograph series) , 1962 .

[14]  Laveen N. Kanal,et al.  Patterns in pattern recognition: 1968-1974 , 1974, IEEE Trans. Inf. Theory.