Optimization of Polynomials in Non-Commuting Variables

In Chap. 3 trace-positivity together with the question how to detect it was explored in details. Due to hardness of the decision problem “Is a given nc polynomial f trace-positive?” we proposed a relaxation of the problem, i.e., we are asking if f is cyclically equivalent to SOHS. The tracial Gram matrix method based on the tracial Newton polytope was proposed (see Sects. 3.3 and 3.4) to efficiently detect such polynomials.

[1]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[2]  A. Connes,et al.  Classification of Injective Factors Cases II 1 , II ∞ , III λ , λ 1 , 1976 .

[3]  B. Reznick Extremal PSD forms with few terms , 1978 .

[4]  B. Reznick,et al.  Sums of squares of real polynomials , 1995 .

[5]  Kim-Chuan Toh,et al.  SDPT3 -- A Matlab Software Package for Semidefinite Programming , 1996 .

[6]  C. Roos,et al.  Infeasible Start Semidefinite Programming Algorithms Via Self-Dual Embeddings , 1997 .

[7]  T Talaky,et al.  Interior Point Methods of Mathematical Programming , 1997 .

[8]  V. Powers,et al.  An algorithm for sums of squares of real polynomials , 1998 .

[9]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[10]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[11]  Etienne de Klerk,et al.  On the Convergence of the Central Path in Semidefinite Optimization , 2002, SIAM J. Optim..

[12]  Pablo A. Parrilo,et al.  Semidefinite programming relaxations for semialgebraic problems , 2003, Math. Program..

[13]  Masakazu Kojima,et al.  Implementation and evaluation of SDPA 6.0 (Semidefinite Programming Algorithm 6.0) , 2003, Optim. Methods Softw..

[14]  J. Lasserre,et al.  Detecting global optimality and extracting solutions in GloptiPoly , 2003 .

[15]  S. Basu,et al.  Algorithms in real algebraic geometry , 2003 .

[16]  Hans D. Mittelmann,et al.  An independent benchmarking of SDP and SOCP solvers , 2003, Math. Program..

[17]  N. Gisin,et al.  A relevant two qubit Bell inequality inequivalent to the CHSH inequality , 2003, quant-ph/0306129.

[18]  Elliott H. Lieb,et al.  Equivalent Forms of the Bessis–Moussa–Villani Conjecture , 2004 .

[19]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[20]  Christopher J. Hillar ADVANCES ON THE BESSIS- MOUSSA-VILLANI TRACE CONJECTURE , 2005 .

[21]  Peter J Seiler,et al.  SOSTOOLS and its control applications , 2005 .

[22]  Franz Rendl,et al.  A Boundary Point Method to Solve Semidefinite Programs , 2006, Computing.

[23]  E. Speer,et al.  On D. Haegele's approach to the Bessis-Moussa-Villani conjecture , 2007, 0711.0672.

[24]  D. Hägele Proof of the Cases p≤ 7 of the Lieb-Seiringer Formulation of the Bessis-Moussa-Villani Conjecture , 2007, math/0702217.

[25]  Stephanie Wehner,et al.  The Quantum Moment Problem and Bounds on Entangled Multi-prover Games , 2008, 2008 23rd Annual IEEE Conference on Computational Complexity.

[26]  Igor Klep,et al.  Sums of Hermitian Squares and the BMV Conjecture , 2008 .

[27]  Igor Klep,et al.  Connes' embedding conjecture and sums of hermitian squares , 2008 .

[28]  Sabine Burgdorf,et al.  Sums of Hermitian squares as an approach to the BMV conjecture , 2008, 0802.1153.

[29]  Benoît Collins,et al.  Sum-of-Squares Results for Polynomials Related to the Bessis–Moussa–Villani Conjecture , 2009 .

[30]  Tamás Terlaky,et al.  New stopping criteria for detecting infeasibility in conic optimization , 2009, Optim. Lett..

[31]  Didier Henrion,et al.  GloptiPoly 3: moments, optimization and semidefinite programming , 2007, Optim. Methods Softw..

[32]  J. Lasserre Moments, Positive Polynomials And Their Applications , 2009 .

[33]  Franz Rendl,et al.  Regularization Methods for Semidefinite Programming , 2009, SIAM J. Optim..

[34]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[35]  J. Povh,et al.  A note on the nonexistence of sum of squares certificates for the Bessis–Moussa–Villani conjecture , 2010 .

[36]  Igor Klep,et al.  Semidefinite programming and sums of hermitian squares of noncommutative polynomials , 2010 .

[37]  Stefano Pironio,et al.  Convergent Relaxations of Polynomial Optimization Problems with Noncommuting Variables , 2009, SIAM J. Optim..

[38]  Igor Klep,et al.  NCSOStools: a computer algebra system for symbolic and numerical computation with noncommutative polynomials , 2011, Optim. Methods Softw..

[39]  H. Stahl,et al.  Proof of the BMV conjecture , 2011, 1107.4875.

[40]  Jiawang Nie,et al.  The A-Truncated K -Moment Problem , 2012 .

[41]  Igor Klep,et al.  Constrained Polynomial Optimization Problems with Noncommuting Variables , 2012, SIAM J. Optim..

[42]  Zheng-Feng Ji,et al.  Binary Constraint System Games and Locally Commutative Reductions , 2013, ArXiv.

[43]  Monique Laurent,et al.  Conic Approach to Quantum Graph Parameters Using Linear Optimization Over the Completely Positive Semidefinite Cone , 2013, SIAM J. Optim..

[44]  Igor Klep,et al.  Rational sums of hermitian squares of free noncommutative polynomials , 2015, Ars Math. Contemp..

[45]  Igor Klep,et al.  Constrained trace-optimization of polynomials in freely noncommuting variables , 2016, J. Glob. Optim..