Beyond Zeldovich-Type Approximations in Gravitational Instability Theory: Padé Prescription in Spheroidal Collapse
暂无分享,去创建一个
[1] T. Matsubara,et al. Accuracy of Nonlinear Approximations in Spheroidal Collapse: Why Are Zeldovich-Type Approximations Good? , 1997, astro-ph/9707296.
[2] S. Shandarin,et al. ACCURACY OF LAGRANGIAN APPROXIMATIONS IN VOIDS , 1996 .
[3] P. Coles,et al. Approximation methods for non-linear gravitational clustering , 1995, astro-ph/9505005.
[4] P. Catelan. Lagrangian dynamics in non-flat universes and non-linear gravitational evolution , 1994, astro-ph/9406016.
[5] A. Starobinsky,et al. Non-Linear Approximations to Gravitational Instability: A Comparison in the Quasi-Linear Regime , 1994, astro-ph/9402065.
[6] T. Buchert. Lagrangian theory of gravitational instability of Friedman-Lemaître cosmologies: a generic third-order model for non-linear clustering , 1993, astro-ph/9309055.
[7] T. Buchert,et al. Lagrangian theory of gravitational instability of Friedman–Lemaître cosmologies – second-order approach: an improved model for non-linear clustering , 1993 .
[8] A. Melott,et al. Testing approximations for non-linear gravitational clustering , 1993 .
[9] A. Kashlinsky,et al. Large-scale structure in the Universe , 1991, Nature.
[10] S. Rey,et al. Coupling of Modes of Cosmological Mass Density Fluctuations , 1986 .
[11] J. Fry,et al. The Galaxy correlation hierarchy in perturbation theory , 1984 .
[12] J. Silk,et al. The growth of aspherical structure in the universe - Is the Local Supercluster an unusual system , 1979 .
[13] Y. Zel’dovich. Fragmentation of a homogeneous medium under the action of gravitation , 1970 .