Colour quantisation using the adaptive distributing units algorithm

Abstract Colour quantisation (CQ) is an important operation with many applications in graphics and image processing. Most CQ methods are essentially based on data clustering algorithms one of which is the popular k-means algorithm. Unfortunately, like many batch clustering algorithms, k-means is highly sensitive to the selection of the initial cluster centres. In this paper, we adapt Uchiyama and Arbib’s competitive learning algorithm to the CQ problem. In contrast to the batch k-means algorithm, this online clustering algorithm does not require cluster centre initialisation. Experiments on a diverse set of publicly available images demonstrate that the presented method outperforms some of the most popular quantisers in the literature.

[1]  Andrew Chi-Sing Leung,et al.  Self-organizing map-based color palette for high-dynamic range texture compression , 2011, Neural Computing and Applications.

[2]  Wen-Hsiang Tsai,et al.  Color image compression using quantization, thresholding, and edge detection techniques all based on the moment-preserving principle , 1998, Pattern Recognit. Lett..

[3]  Gerald Schaefer,et al.  Fuzzy clustering for colour reduction in images , 2009, Telecommun. Syst..

[4]  Enhua Wu,et al.  Real-time coherent stylization for augmented reality , 2010, The Visual Computer.

[5]  Gregory Joy,et al.  Center-cut for color-image quantization , 2005, The Visual Computer.

[6]  Aleksandra Mojsilovic,et al.  Color Quantization and Processing by Fibonacci Lattices , 2022 .

[7]  K. C. Lo,et al.  Colour quantization by three-dimensional frequency diffusion , 2003, Pattern Recognit. Lett..

[8]  Jan P. Allebach,et al.  New approach to palette selection for color images , 1991, Electronic Imaging.

[9]  Masayuki Okamoto,et al.  Color quantization using the fast K-means algorithm , 2000, Systems and Computers in Japan.

[10]  Doheon Lee,et al.  A novel initialization scheme for the fuzzy c-means algorithm for color clustering , 2004, Pattern Recognit. Lett..

[11]  Naftaly Goldberg,et al.  Colour image quantization for high resolution graphics display , 1991, Image Vis. Comput..

[12]  Gregory Joy,et al.  Color image quantization by agglomerative clustering , 1994, IEEE Computer Graphics and Applications.

[13]  Michael T. Orchard,et al.  Color quantization of images , 1991, IEEE Trans. Signal Process..

[14]  Bing-Hwang Su,et al.  Accelerated k-means clustering algorithm for colour image quantization , 2008 .

[15]  Joel H. Saltz,et al.  Histopathological Image Analysis Using Model-Based Intermediate Representations and Color Texture: Follicular Lymphoma Grading , 2009, J. Signal Process. Syst..

[16]  Gerald Schaefer Intelligent Approaches to Colour Palette Design , 2011 .

[17]  Shyi-Chyi Cheng,et al.  Fusion of color edge detection and color quantization for color image watermarking using principal axes analysis , 2007, Pattern Recognit..

[18]  Pierre Hansen,et al.  NP-hardness of Euclidean sum-of-squares clustering , 2008, Machine Learning.

[19]  Zhigang Xiang,et al.  Color image quantization by minimizing the maximum intercluster distance , 1997, TOGS.

[20]  William Equitz,et al.  A new vector quantization clustering algorithm , 1989, IEEE Trans. Acoust. Speech Signal Process..

[21]  A. Ersak,et al.  A fuzzy colour quantizer for renderers , 1998 .

[22]  Daniel Thalmann,et al.  New Trends in Computer Graphics , 1988, Springer Berlin Heidelberg.

[23]  Takuji Nishimura,et al.  Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.

[24]  William H. Press,et al.  Numerical recipes , 1990 .

[25]  Lale Akarun,et al.  A fuzzy algorithm for color quantization of images , 2002, Pattern Recognit..

[26]  Anthony H. Dekker,et al.  Kohonen neural networks for optimal colour quantization , 1994 .

[27]  Quan Wen,et al.  Hard versus fuzzy c-means clustering for color quantization , 2011, EURASIP J. Adv. Signal Process..

[28]  Oleg. Verevka The local K-means algorithm for colour image quantization , 1995 .

[29]  Ja-Chen Lin,et al.  RWM-cut for color image quantization , 1996, Comput. Graph..

[30]  Jakub Marecek,et al.  Handbook of Approximation Algorithms and Metaheuristics , 2010, Comput. J..

[31]  Evripidis Bampis,et al.  Handbook of Approximation Algorithms and Metaheuristics , 2007 .

[32]  Charalambos Strouthopoulos,et al.  Adaptive color reduction , 2002, IEEE Trans. Syst. Man Cybern. Part B.

[33]  P. Prusinkiewicz,et al.  Variance‐based color image quantization for frame buffer display , 1990 .

[34]  Surapong Auwatanamongkol,et al.  Color image quantization using distances between adjacent colors along the color axis with highest color variance , 2004, Pattern Recognit. Lett..

[35]  Michael T. Heath,et al.  Scientific Computing: An Introductory Survey , 1996 .

[36]  David Zipser,et al.  Feature Discovery by Competive Learning , 1986, Cogn. Sci..

[37]  Nasser Sherkat,et al.  Use of colour for hand-filled form analysis and recognition , 2005, Pattern Analysis and Applications.

[38]  M. Emre Celebi,et al.  Improving the performance of k-means for color quantization , 2011, Image Vis. Comput..

[39]  Ronald S. Gentile,et al.  Quantization of color images based on uniform color spaces , 1990 .

[40]  Paul Scheunders,et al.  A comparison of clustering algorithms applied to color image quantization , 1997, Pattern Recognit. Lett..

[41]  Paul S. Heckbert Color image quantization for frame buffer display , 1982, SIGGRAPH.

[42]  J. H. Ward Hierarchical Grouping to Optimize an Objective Function , 1963 .

[43]  Kuo-Chin Fan,et al.  An adaptive clustering algorithm for color quantization , 2000, Pattern Recognit. Lett..

[44]  Paul Bratley,et al.  Algorithm 659: Implementing Sobol's quasirandom sequence generator , 1988, TOMS.

[45]  B. S. Manjunath,et al.  Unsupervised Segmentation of Color-Texture Regions in Images and Video , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[46]  Kuo-Liang Chung,et al.  Speedup of color palette indexing in self-organization of Kohonen feature map , 2009, Expert Syst. Appl..

[47]  Abbas Vafaei,et al.  Color reduction using a multi-stage Kohonen Self-Organizing Map with redundant features , 2011, Expert Syst. Appl..

[48]  Meena Mahajan,et al.  The Planar k-means Problem is NP-hard I , 2009 .

[49]  Michael A. Arbib,et al.  An algorithm for competitive learning in clustering problems , 1994, Pattern Recognit..

[50]  B. S. Manjunath,et al.  An efficient color representation for image retrieval , 2001, IEEE Trans. Image Process..

[51]  Xiaolin Wu,et al.  EFFICIENT STATISTICAL COMPUTATIONS FOR OPTIMAL COLOR QUANTIZATION , 1991 .

[52]  Michael Gervautz,et al.  A simple method for color quantization: octree quantization , 1990 .

[53]  Gerald Schaefer,et al.  Anisotropic Mean Shift Based Fuzzy C-Means Segmentation of Dermoscopy Images , 2009, IEEE Journal of Selected Topics in Signal Processing.

[54]  Bunyarit Uyyanonvara,et al.  Novel fast color reduction algorithm for time-constrained applications , 2005, J. Vis. Commun. Image Represent..

[55]  Gaurav Sharma Digital Color Imaging Handbook , 2002 .

[56]  Ruey-Feng Chang,et al.  A Fast Finite-State Algorithm for Generating RGB Palettes of Color Quantized Images , 2004, J. Inf. Sci. Eng..

[57]  Gerald Schaefer,et al.  An Overview of Fuzzy C-Means Based Image Clustering Algorithms , 2009, Foundations of Computational Intelligence.

[58]  Agostino Tarsitano,et al.  A computational study of several relocation methods for k-means algorithms , 2003, Pattern Recognit..

[59]  Lakhmi C. Jain,et al.  Innovations in Intelligent Image Analysis , 2011 .

[60]  Zhou Bing,et al.  An adjustable algorithm for color quantization , 2004, Pattern Recognit. Lett..

[61]  Chip-Hong Chang,et al.  New adaptive color quantization method based on self-organizing maps , 2005, IEEE Transactions on Neural Networks.

[62]  Luiz Velho,et al.  Color image quantization by pairwise clustering , 1997, Proceedings X Brazilian Symposium on Computer Graphics and Image Processing.

[63]  Mariusz Frackiewicz,et al.  KM and KHM Clustering Techniques for Colour Image Quantisation , 2011 .

[64]  Yu-Chen Hu,et al.  K-means-based color palette design scheme with the use of stable flags , 2007, J. Electronic Imaging.

[65]  Ajith Abraham,et al.  Foundations of Computational Intelligence - Volume 2: Approximate Reasoning , 2009, Foundations of Computational Intelligence.

[66]  Shyi-Chyi Cheng,et al.  A fast and novel technique for color quantization using reduction of color space dimensionality , 2001, Pattern Recognit. Lett..

[67]  Patricio A. Vela,et al.  A Comparative Study of Efficient Initialization Methods for the K-Means Clustering Algorithm , 2012, Expert Syst. Appl..

[68]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[69]  R. M. Natal Jorge,et al.  Computational Vision and Medical Image Processing - Recent Trends , 2011 .