Resolvent of large random graphs

We analyze the convergence of the spectrum of large random graphs to the spectrum of a limit infinite graph. We apply these results to graphs converging locally to trees and derive a new formula for the Stieltjes transform of the spectral measure of such graphs. We illustrate our results on the uniform regular graphs, Erdos-Renyi graphs and graphs with a given degree sequence. We give examples of application for weighted graphs, bipartite graphs and the uniform spanning tree of n vertices. © 2010 Wiley Periodicals, Inc. Random Struct. Alg., 2010

[1]  T. Guhr,et al.  RANDOM-MATRIX THEORIES IN QUANTUM PHYSICS : COMMON CONCEPTS , 1997, cond-mat/9707301.

[2]  Bruce A. Reed,et al.  A Critical Point for Random Graphs with a Given Degree Sequence , 1995, Random Struct. Algorithms.

[3]  B. Mohar,et al.  A Survey on Spectra of infinite Graphs , 1989 .

[4]  Harry Kesten,et al.  Symmetric random walks on groups , 1959 .

[5]  B. Mohar The spectrum of an infinite graph , 1982 .

[6]  Bojan Mohar,et al.  Walk generating functions and spectral measures of infinite graphs , 1988 .

[7]  P. Billingsley,et al.  Convergence of Probability Measures , 1970, The Mathematical Gazette.

[8]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[9]  G. Elek On limits of finite graphs , 2005, math/0505335.

[10]  J. Michael Steele,et al.  The Objective Method: Probabilistic Combinatorial Optimization and Local Weak Convergence , 2004 .

[11]  D. Aldous,et al.  Processes on Unimodular Random Networks , 2006, math/0603062.

[12]  László Lovász,et al.  Graph limits and parameter testing , 2006, STOC '06.

[13]  N. Wormald,et al.  Models of the , 2010 .

[14]  Koujin Takeda,et al.  Cavity approach to the spectral density of sparse symmetric random matrices. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  Arthur S. Wightman The Collected Works of Eugene Paul Wigner : the Scientific Papers , 1993 .

[16]  Iwao Sato,et al.  The semicircle law for semiregular bipartite graphs , 2003, J. Comb. Theory, Ser. A.

[17]  Geoffrey Grimmett,et al.  Random labelled trees and their branching networks , 1980 .

[18]  Jean-Pierre Serre,et al.  Répartition asymptotique des valeurs propres de l’opérateur de Hecke _ , 1997 .

[19]  Charles Bordenave,et al.  Spectrum of large random reversible Markov chains: Heavy-tailed weights on the complete graph , 2009, 0903.3528.

[20]  Mariya Shcherbina,et al.  Eigenvalue distribution of large weighted random graphs , 2004 .

[21]  Rodgers,et al.  Density of states of a sparse random matrix. , 1988, Physical review. B, Condensed matter.

[22]  B. McKay The expected eigenvalue distribution of a large regular graph , 1981 .

[23]  Béla Bollobás,et al.  Sparse graphs: Metrics and random models , 2008, Random Struct. Algorithms.

[24]  V. Sós,et al.  Convergent Sequences of Dense Graphs I: Subgraph Frequencies, Metric Properties and Testing , 2007, math/0702004.

[25]  J. Conway,et al.  Functions of a Complex Variable , 1964 .

[26]  Z. Bai,et al.  METHODOLOGIES IN SPECTRAL ANALYSIS OF LARGE DIMENSIONAL RANDOM MATRICES, A REVIEW , 2008 .

[27]  Béla Bollobás,et al.  A Probabilistic Proof of an Asymptotic Formula for the Number of Labelled Regular Graphs , 1980, Eur. J. Comb..

[28]  R. Durrett Random Graph Dynamics: References , 2006 .

[29]  Rick Durrett,et al.  Random Graph Dynamics (Cambridge Series in Statistical and Probabilistic Mathematics) , 2006 .

[30]  Noureddine El Karoui Spectrum estimation for large dimensional covariance matrices using random matrix theory , 2006, math/0609418.

[31]  Rüdiger L. Urbanke,et al.  Modern Coding Theory , 2008 .

[32]  I. Benjamini,et al.  Recurrence of Distributional Limits of Finite Planar Graphs , 2000, math/0011019.

[33]  J. W. Silverstein,et al.  Spectral Analysis of Large Dimensional Random Matrices , 2009 .

[34]  R. Monasson,et al.  LETTER TO THE EDITOR: A single defect approximation for localized states on random lattices , 1999, cond-mat/9902032.

[35]  Guilhem Semerjian,et al.  Sparse random matrices: the eigenvalue spectrum revisited , 2002 .

[36]  F. Hiai,et al.  The semicircle law, free random variables, and entropy , 2006 .

[37]  László Lovász,et al.  Limits of dense graph sequences , 2004, J. Comb. Theory B.

[38]  D. Aldous,et al.  A survey of max-type recursive distributional equations , 2004, math/0401388.

[39]  O. Golinelli,et al.  Random Incidence Matrices: Moments of the Spectral Density , 2001 .

[40]  Gábor Elek Note on limits of finite graphs , 2007, Comb..

[41]  M. Reed Methods of Modern Mathematical Physics. I: Functional Analysis , 1972 .