Resolvent of large random graphs
暂无分享,去创建一个
[1] T. Guhr,et al. RANDOM-MATRIX THEORIES IN QUANTUM PHYSICS : COMMON CONCEPTS , 1997, cond-mat/9707301.
[2] Bruce A. Reed,et al. A Critical Point for Random Graphs with a Given Degree Sequence , 1995, Random Struct. Algorithms.
[3] B. Mohar,et al. A Survey on Spectra of infinite Graphs , 1989 .
[4] Harry Kesten,et al. Symmetric random walks on groups , 1959 .
[5] B. Mohar. The spectrum of an infinite graph , 1982 .
[6] Bojan Mohar,et al. Walk generating functions and spectral measures of infinite graphs , 1988 .
[7] P. Billingsley,et al. Convergence of Probability Measures , 1970, The Mathematical Gazette.
[8] Mark S. C. Reed,et al. Method of Modern Mathematical Physics , 1972 .
[9] G. Elek. On limits of finite graphs , 2005, math/0505335.
[10] J. Michael Steele,et al. The Objective Method: Probabilistic Combinatorial Optimization and Local Weak Convergence , 2004 .
[11] D. Aldous,et al. Processes on Unimodular Random Networks , 2006, math/0603062.
[12] László Lovász,et al. Graph limits and parameter testing , 2006, STOC '06.
[13] N. Wormald,et al. Models of the , 2010 .
[14] Koujin Takeda,et al. Cavity approach to the spectral density of sparse symmetric random matrices. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.
[15] Arthur S. Wightman. The Collected Works of Eugene Paul Wigner : the Scientific Papers , 1993 .
[16] Iwao Sato,et al. The semicircle law for semiregular bipartite graphs , 2003, J. Comb. Theory, Ser. A.
[17] Geoffrey Grimmett,et al. Random labelled trees and their branching networks , 1980 .
[18] Jean-Pierre Serre,et al. Répartition asymptotique des valeurs propres de l’opérateur de Hecke _ , 1997 .
[19] Charles Bordenave,et al. Spectrum of large random reversible Markov chains: Heavy-tailed weights on the complete graph , 2009, 0903.3528.
[20] Mariya Shcherbina,et al. Eigenvalue distribution of large weighted random graphs , 2004 .
[21] Rodgers,et al. Density of states of a sparse random matrix. , 1988, Physical review. B, Condensed matter.
[22] B. McKay. The expected eigenvalue distribution of a large regular graph , 1981 .
[23] Béla Bollobás,et al. Sparse graphs: Metrics and random models , 2008, Random Struct. Algorithms.
[24] V. Sós,et al. Convergent Sequences of Dense Graphs I: Subgraph Frequencies, Metric Properties and Testing , 2007, math/0702004.
[25] J. Conway,et al. Functions of a Complex Variable , 1964 .
[26] Z. Bai,et al. METHODOLOGIES IN SPECTRAL ANALYSIS OF LARGE DIMENSIONAL RANDOM MATRICES, A REVIEW , 2008 .
[27] Béla Bollobás,et al. A Probabilistic Proof of an Asymptotic Formula for the Number of Labelled Regular Graphs , 1980, Eur. J. Comb..
[28] R. Durrett. Random Graph Dynamics: References , 2006 .
[29] Rick Durrett,et al. Random Graph Dynamics (Cambridge Series in Statistical and Probabilistic Mathematics) , 2006 .
[30] Noureddine El Karoui. Spectrum estimation for large dimensional covariance matrices using random matrix theory , 2006, math/0609418.
[31] Rüdiger L. Urbanke,et al. Modern Coding Theory , 2008 .
[32] I. Benjamini,et al. Recurrence of Distributional Limits of Finite Planar Graphs , 2000, math/0011019.
[33] J. W. Silverstein,et al. Spectral Analysis of Large Dimensional Random Matrices , 2009 .
[34] R. Monasson,et al. LETTER TO THE EDITOR: A single defect approximation for localized states on random lattices , 1999, cond-mat/9902032.
[35] Guilhem Semerjian,et al. Sparse random matrices: the eigenvalue spectrum revisited , 2002 .
[36] F. Hiai,et al. The semicircle law, free random variables, and entropy , 2006 .
[37] László Lovász,et al. Limits of dense graph sequences , 2004, J. Comb. Theory B.
[38] D. Aldous,et al. A survey of max-type recursive distributional equations , 2004, math/0401388.
[39] O. Golinelli,et al. Random Incidence Matrices: Moments of the Spectral Density , 2001 .
[40] Gábor Elek. Note on limits of finite graphs , 2007, Comb..
[41] M. Reed. Methods of Modern Mathematical Physics. I: Functional Analysis , 1972 .