Geometrical and optical benchmarking of copper guanidine–quinoline complexes: Insights from TD‐DFT and many‐body perturbation theory†

We report a comprehensive computational benchmarking of the structural and optical properties of a bis(chelate) copper(I) guanidine–quinoline complex. Using various (TD‐)DFT flavors a strong influence of the basis set is found. Moreover, the amount of exact exchange shifts metal‐to‐ligand bands by 1 eV through the absorption spectrum. The BP86/6‐311G(d) and B3LYP/def2‐TZVP functional/basis set combinations were found to yield results in best agreement with the experimental data. In order to probe the general applicability of TD‐DFT to excitations of copper bis(chelate) charge‐transfer (CT) systems, we studied a small model system that on the one hand is accessible to methods of many‐body perturbation theory (MBPT) but still contains simple guanidine and imine groups. These calculations show that large quasiparticle energies of the order of several electronvolts are largely offset by exciton binding energies for optical excitations and that TD‐DFT excitation energies deviate from MBPT results by at most 0.5 eV, further corroborating the reliability of our TD‐DFT results. The latter result in a multitude of MLCT bands ranging from the visible region at 3.4 eV into the UV at 5.5 eV for the bis(chelate) complex. Molecular orbital analysis provided insight into the CT within these systems but gave mixed transitions. A meaningful transition assignment is possible, however, by using natural transition orbitals. Additionally, we performed a thorough conformational analysis as the correct description of the copper coordination is crucial for the prediction of optical spectra. We found that DFT identifies the correct conformational minimum and that the MLCTs are strongly dependent on the torsion of the chelate angles at the copper center. From the results, it is concluded that extensive benchmarking allows for the quantitative analyses of the CT behavior of copper bis(chelate) complexes within TD‐DFT. © 2013 Wiley Periodicals, Inc.

[1]  Clark R. Landis,et al.  NBO 6.0: Natural bond orbital analysis program , 2013, J. Comput. Chem..

[2]  A. Listorti,et al.  Photochemistry and Photophysics of Coordination Compounds: Copper , 2007 .

[3]  M. A. O. Ignacio,et al.  How to cite this article , 2016 .

[4]  P. C. Hariharan,et al.  The influence of polarization functions on molecular orbital hydrogenation energies , 1973 .

[5]  M. Head‐Gordon,et al.  Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. , 2008, Physical chemistry chemical physics : PCCP.

[6]  Pedro Alexandrino Fernandes,et al.  Comparative analysis of the performance of commonly available density functionals in the determination of geometrical parameters for zinc complexes , 2009, J. Comput. Chem..

[7]  M. Preuss,et al.  Optical absorption of water: coulomb effects versus hydrogen bonding. , 2005, Physical review letters.

[8]  Frank Weinhold,et al.  Natural hybrid orbitals , 1980 .

[9]  D. Lichtenberger,et al.  Intramolecular electron transfer in bipyridinium disulfides. , 2014, Journal of the American Chemical Society.

[10]  Georg Kresse,et al.  Self-consistent G W calculations for semiconductors and insulators , 2007 .

[11]  Peter Comba,et al.  Distortional isomerism with copper(I) complexes of 3,7-diazabicyclo[3.3.1]nonane derivatives. , 2009, Dalton transactions.

[12]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[13]  M. Frisch,et al.  Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields , 1994 .

[14]  E. Solomon,et al.  Electronic structure contributions to function in bioinorganic chemistry. , 1993, Science.

[15]  Lucia Reining,et al.  An efficient method for calculating quasiparticle energies in semiconductors , 1992 .

[16]  Quantum chemistry study of interaction of Cu2+ cation and aqua–copper [Cu(H2O)1–4]2+ complexes with resveratrol stereoisomers, phospholipid and deoxythymidine 5′-monophosphate , 2010 .

[17]  G. Scuseria,et al.  Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. , 2003, Physical review letters.

[18]  R J Williams,et al.  Metalloenzymes: the entatic nature of their active sites. , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Denis Andrienko,et al.  Excited States of Dicyanovinyl-Substituted Oligothiophenes from Many-Body Green's Functions Theory. , 2012, Journal of chemical theory and computation.

[20]  K. Gordon,et al.  Heteroleptic Cu(I) bis-diimine complexes of 6,6'-dimesityl-2,2'-bipyridine: a structural, theoretical and spectroscopic study. , 2013, Inorganic chemistry.

[21]  Li Tian,et al.  Copper active sites in biology. , 2014, Chemical reviews.

[22]  Sonja Herres-Pawlis,et al.  Neue Bisguanidin-Kupfer-Komplexe und ihre Anwendung in der ATRP/ New Bisguanidine-Copper Complexes and their Application in ATRP , 2010 .

[23]  Stefan Grimme,et al.  Effect of the damping function in dispersion corrected density functional theory , 2011, J. Comput. Chem..

[24]  Jens Eberhard,et al.  2-Aminopyrimidine-silver(I) based organic semiconductors: Electronic structure and optical response , 2012 .

[25]  A. Wachters,et al.  Gaussian Basis Set for Molecular Wavefunctions Containing Third‐Row Atoms , 1970 .

[26]  Sonja Herres-Pawlis,et al.  Tuning of Copper(I)–Dioxygen Reactivity by Bis(guanidine) Ligands , 2005 .

[27]  L. Hedin NEW METHOD FOR CALCULATING THE ONE-PARTICLE GREEN'S FUNCTION WITH APPLICATION TO THE ELECTRON-GAS PROBLEM , 1965 .

[28]  A. Tsipis DFT flavor of coordination chemistry , 2014 .

[29]  Sonja Herres-Pawlis,et al.  Bidentate guanidine ligands with ethylene spacer in copper-dioxygen chemistry: Structural characterization of bis(μ-hydroxo) dicopper complexes , 2011 .

[30]  Richard Grunzke,et al.  Insights into the influence of dispersion correction in the theoretical treatment of guanidine‐quinoline copper(I) complexes , 2014, J. Comput. Chem..

[31]  Giovanni Vignale,et al.  Electronic density functional theory : recent progress and new directions , 1998 .

[32]  Peter Comba,et al.  Computation of structures and properties of transition metal compounds , 2009 .

[33]  John E. Carpenter,et al.  Analysis of the geometry of the hydroxymethyl radical by the “different hybrids for different spins” natural bond orbital procedure , 1988 .

[34]  Thomas Frauenheim,et al.  Hydrogen bonding and stacking interactions of nucleic acid base pairs: A density-functional-theory based treatment , 2001 .

[35]  D. Rorabacher,et al.  Electron transfer by copper centers. , 2004, Chemical reviews.

[36]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[37]  W. Schmidt,et al.  Optical response of stoichiometric and congruent lithium niobate from first-principles calculations , 2013 .

[38]  V. Barone,et al.  Toward reliable density functional methods without adjustable parameters: The PBE0 model , 1999 .

[39]  F. Bechstedt,et al.  Linear optical properties in the projector-augmented wave methodology , 2006 .

[40]  Caroline König,et al.  Mono‐ and Dinuclear NiII and CoII Complexes that Feature Chelating Guanidine Ligands: Structural Characteristics and Molecular Magnetism , 2010 .

[41]  M. Dion,et al.  van der Waals density functional for general geometries. , 2004, Physical review letters.

[42]  Mark A. Ratner,et al.  6-31G * basis set for atoms K through Zn , 1998 .

[43]  Friedhelm Bechstedt,et al.  EfficientO(N2)method to solve the Bethe-Salpeter equation , 2003 .

[44]  S. Grimme,et al.  A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions. , 2011, Physical chemistry chemical physics : PCCP.

[45]  Sonja Herres-Pawlis,et al.  Bis‐μ‐oxo and μ‐η2:η2‐peroxo dicopper complexes studied within (time‐dependent) density‐functional and many‐body perturbation theory , 2013, J. Comput. Chem..

[46]  Timothy Clark,et al.  Efficient diffuse function‐augmented basis sets for anion calculations. III. The 3‐21+G basis set for first‐row elements, Li–F , 1983 .

[47]  S. Herres‐Pawlis,et al.  Neue aromatische Bisguanidin-Kupfer-Komplexe und ihre Anwendung in der ATRP / New Aromatic Bisguanidine Copper Complexes and Their Application in ATRP , 2014 .

[48]  J. Pople,et al.  Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules , 1972 .

[49]  N. McClenaghan,et al.  Improving the photophysical properties of copper(I) bis(phenanthroline) complexes , 2008 .

[50]  A. Marini,et al.  Exciton-plasmon States in nanoscale materials: breakdown of the Tamm-Dancoff approximation. , 2008, Nano letters.

[51]  E. Solomon,et al.  Electronic structures of active sites in electron transfer metalloproteins: contributions to reactivity , 2000 .

[52]  S. Alvarez,et al.  Further Theoretical Evidence for the Exceptionally Strong Ferromagnetic Coupling in Oxo-Bridged Cu(II) Dinuclear Complexes , 2002 .

[53]  Carsten A. Ullrich,et al.  Time-Dependent Density-Functional Theory: Concepts and Applications , 2012 .

[54]  Alexander Hoffmann,et al.  Den entatischen Zustand im Griff – ein Duo von Kupfer‐Komplexen , 2014 .

[55]  Stephen L. Adler,et al.  Quantum theory of the dielectric constant in real solids. , 1962 .

[56]  Alexander Hoffmann,et al.  Catching an entatic state--a pair of copper complexes. , 2014, Angewandte Chemie.

[57]  Alexander Hoffmann,et al.  Insights into Different Donor Abilities in Bis(pyrazolyl)pyridinylmethane Transition Metal Complexes , 2014 .

[58]  Hermann Stoll,et al.  Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr , 1989 .

[59]  T. D. Stack,et al.  Structure and spectroscopy of copper-dioxygen complexes. , 2004, Chemical reviews.

[60]  Michael J. Frisch,et al.  Self‐consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets , 1984 .

[61]  F. Bechstedt,et al.  Attracted by long-range electron correlation: adenine on graphite. , 2005, Physical review letters.

[62]  D. Powell,et al.  Structural variation in copper(I) complexes with pyridylmethylamide ligands: structural analysis with a new four-coordinate geometry index, tau4. , 2007, Dalton transactions.

[63]  K. Pandey Shared electron versus donor–acceptor bonding description of Fe–ER bonds in [(η5-C5H5)(L)2Fe(ER)] (L = CO, PMe3; E = Si, Ge, Sn, Pb; R = Ph, Me) , 2014 .

[64]  Krishnan Raghavachari,et al.  Highly correlated systems. Ionization energies of first row transition metals Sc–Zn , 1989 .

[65]  A. Tkatchenko,et al.  Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. , 2009, Physical review letters.

[66]  Yuchen Ma,et al.  Excited states of biological chromophores studied using many-body perturbation theory: Effects of resonant-antiresonant coupling and dynamical screening , 2009 .

[67]  Nathan Wiser,et al.  Dielectric Constant with Local Field Effects Included , 1963 .

[68]  F. Weigend,et al.  Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. , 2005, Physical chemistry chemical physics : PCCP.

[69]  K. Jørgensen,et al.  Catalytic asymmetric Friedel-Crafts alkylation reactions--copper showed the way. , 2008, Chemical reviews.

[70]  U. Flörke,et al.  Syntheses and X-ray Structure Analyses of the First Bis(chelated) Copper and Iron Bisguanidine Complexes , 2008 .

[71]  D. Truhlar,et al.  A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. , 2006, The Journal of chemical physics.

[72]  Koichi Nozaki,et al.  Structure-dependent photophysical properties of singlet and triplet metal-to-ligand charge transfer states in copper(I) bis(diimine) compounds. , 2003, Inorganic chemistry.

[73]  M. Solà,et al.  The role of electronic delocalization in transition metal complexes from the electron localization function and the quantum theory of atoms in molecules viewpoints , 2009 .

[74]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[75]  Friedhelm Bechstedt,et al.  Molecular electronic excitations calculated from a solid-state approach: Methodology and numerics , 2005 .

[76]  M. Tamm,et al.  Structural and theoretical investigation of 2-iminoimidazolines--carbene analogues of iminophosphoranes. , 2007, Organic & biomolecular chemistry.

[77]  P. Jeffrey Hay,et al.  Gaussian basis sets for molecular calculations. The representation of 3d orbitals in transition‐metal atoms , 1977 .

[78]  Frank Neese,et al.  A critical evaluation of DFT, including time-dependent DFT, applied to bioinorganic chemistry , 2006, JBIC Journal of Biological Inorganic Chemistry.

[79]  Sonja Herres-Pawlis,et al.  A Library of Peralkylated Bis‐guanidine Ligands for Use in Biomimetic Coordination Chemistry , 2005 .

[80]  N. Handy,et al.  A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP) , 2004 .

[81]  W. Schmidt,et al.  The electronic structure and optical response of rutile, anatase and brookite TiO2 , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[82]  S. Herres‐Pawlis,et al.  Structural Aspects of Copper‐Mediated Atom Transfer Radical Polymerization with a Novel Tetradentate Bisguanidine Ligand , 2012 .

[83]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[84]  K. Thygesen,et al.  Renormalization of optical excitations in molecules near a metal surface. , 2011, Physical review letters.

[85]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[86]  A. Tsipis Correction: DFT/TDDFT insights into the chemistry, biochemistry and photophysics of copper coordination compounds , 2014, RSC advances.

[87]  Z. Maksić,et al.  1,8-bis(dimethylethyleneguanidino)naphthalene: tailoring the basicity of bisguanidine "proton sponges" by experiment and theory. , 2003, The Journal of organic chemistry.

[88]  K. Hodgson,et al.  The X-ray absorption spectroscopic model of the copper(II) imidazole complex ion in liquid aqueous solution: a strongly solvated square pyramid. , 2012, Inorganic chemistry.

[89]  Pradeep R. Varadwaj,et al.  The physical chemistry of [M(H2O)4(NO3)2] (M = Mn2+, Co2+, Ni2+, Cu2+, Zn2+) complexes: computational studies of their structure, energetics and the topological properties of the electron density , 2010 .

[90]  Ranbir Singh,et al.  J. Mol. Struct. (Theochem) , 1996 .

[91]  S. Herres‐Pawlis,et al.  New Guanidine-Pyridine Copper Complexes and Their Application in ATRP , 2014 .

[92]  Timothy J Nelson,et al.  A definitive example of a geometric "entatic state" effect: electron-transfer kinetics for a copper(II/I) complex involving A quinquedentate macrocyclic trithiaether-bipyridine ligand. , 2007, Journal of the American Chemical Society.

[93]  G. Kresse,et al.  Implementation and performance of the frequency-dependent GW method within the PAW framework , 2006 .

[94]  A. Kovalevsky,et al.  Solid-state structure dependence of the molecular distortion and spectroscopic properties of the Cu(I) bis(2,9-dimethyl-1,10-phenanthroline) ion. , 2003, Inorganic chemistry.

[95]  J. Perdew,et al.  Density-functional approximation for the correlation energy of the inhomogeneous electron gas. , 1986, Physical review. B, Condensed matter.

[96]  W. Adam,et al.  Metal-Oxo and Metal-Peroxo Species in Catalytic Oxidations , 2000 .

[97]  J. Soler,et al.  Efficient implementation of a van der Waals density functional: application to double-wall carbon nanotubes. , 2008, Physical review letters.

[98]  B. Hathaway,et al.  The electronic properties and stereochemistry of mono-nuclear complexes of the copper(II) ion , 1970 .

[99]  Siegfried Schmauder,et al.  Comput. Mater. Sci. , 1998 .

[100]  Clark R. Landis,et al.  Discovering Chemistry with Natural Bond Orbitals: Weinhold/Discovering Chemistry , 2012 .

[101]  Kasper P. Jensen,et al.  Bioinorganic chemistry modeled with the TPSSh density functional. , 2008, Inorganic chemistry.

[102]  Denis Andrienko,et al.  Frenkel and Charge-Transfer Excitations in Donor-acceptor Complexes from Many-Body Green's Functions Theory. , 2012, Journal of chemical theory and computation.

[103]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[104]  Richard L. Martin NATURAL TRANSITION ORBITALS , 2003 .

[105]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[106]  W. Schmidt,et al.  Resolving the optical spectrum of water: coordination and electrostatic effects. , 2008, Physical review letters.

[107]  Friedhelm Bechstedt,et al.  Semiempirical van der Waals correction to the density functional description of solids and molecular structures , 2006 .

[108]  Serge I. Gorelsky,et al.  Electronic structure and spectra of ruthenium diimine complexes by density functional theory and INDO/S. Comparison of the two methods , 2001 .

[109]  Gábor Terstyánszky,et al.  Quantum chemical meta‐workflows in MoSGrid , 2015, Concurr. Comput. Pract. Exp..

[110]  Thomas Steinke,et al.  The MoSGrid Science Gateway - A Complete Solution for Molecular Simulations. , 2014, Journal of chemical theory and computation.

[111]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[112]  U. Flörke,et al.  Synthesis and Application of New Guanidine Copper Complexes in Atom Transfer Radical Polymerisation , 2011 .

[113]  Wang,et al.  Generalized gradient approximation for the exchange-correlation hole of a many-electron system. , 1996, Physical review. B, Condensed matter.

[114]  Claudia Ambrosch-Draxl,et al.  The role of polymorphism in organic thin films: oligoacenes investigated from first principles , 2009 .

[115]  L. Reining,et al.  Electronic excitations: density-functional versus many-body Green's-function approaches , 2002 .

[116]  H. Ehrenreich,et al.  Self-Consistent Field Approach to the Many-Electron Problem , 1959 .

[117]  L. Reining,et al.  Excitonic effects on the silicon plasmon resonance. , 2001, Physical review letters.