An axiomatic approach to the definition of the entropy of a discrete Choquet capacity

To extend the classical Shannon entropy to nonadditive measures, Marichal recently introduced the concept of generalized entropy for discrete Choquet capacities. We provide a first axiomatization of this new concept on the basis of three axioms: the symmetry property, a boundary condition for which the entropy reduces to the Shannon entropy, and a generalized version of the well-known recursivity property. We also show that this generalized entropy fulfills several properties considered as requisites for defining an entropy-like measure. Lastly, we provide an interpretation of it in the framework of aggregation by the discrete Choquet integral.

[1]  George J. Klir,et al.  On Measuring Uncertainty and Uncertainty-Based Information: Recent Developments , 2001, Annals of Mathematics and Artificial Intelligence.

[2]  Didier Dubois,et al.  Extremal Properties of Belief Measures in the Theory of Evidence , 1993, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[3]  Michel Grabisch,et al.  Equivalent Representations of Set Functions , 2000, Math. Oper. Res..

[4]  Jean-Luc Marichal,et al.  Aggregation operators for multicriteria decision aid , 1998 .

[5]  Didier Dubois,et al.  Possibility Theory - An Approach to Computerized Processing of Uncertainty , 1988 .

[6]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[7]  Alexander Dukhovny,et al.  General Entropy of General Measures , 2002, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[8]  Ronald R. Yager,et al.  On the entropy of fuzzy measures , 2000, IEEE Trans. Fuzzy Syst..

[9]  Michel Grabisch,et al.  Alternative Representations of Discrete Fuzzy Measures for Decision Making , 1997, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[10]  Ronald R. Yager,et al.  A class of fuzzy measures generated from a Dempster-Shafer belief structure , 1999, Int. J. Intell. Syst..

[11]  G. Choquet Theory of capacities , 1954 .

[12]  Jean-Luc Marichal,et al.  Entropy of discrete Choquet capacities , 2002, Eur. J. Oper. Res..

[13]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[14]  D. Dubois,et al.  Properties of measures of information in evidence and possibility theories , 1987 .

[15]  Jean-Luc Marichal,et al.  The influence of variables on pseudo-Boolean functions with applications to game theory and multicriteria decision making , 2000, Discret. Appl. Math..

[16]  Jean-Luc Marichal,et al.  An axiomatic approach of the discrete Choquet integral as a tool to aggregate interacting criteria , 2000, IEEE Trans. Fuzzy Syst..

[17]  P. K. Sahoo,et al.  Characterizations of information measures , 1998 .

[18]  L. Shapley,et al.  A VALUE FOR n-PERSON GAMFB , 2005 .

[19]  Didier Dubois,et al.  Possibility theory , 2018, Scholarpedia.

[20]  George J. Klir,et al.  Fuzzy sets and fuzzy logic - theory and applications , 1995 .

[21]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[22]  A. Rényi On the Foundations of Information Theory , 1965 .

[23]  Michel Grabisch,et al.  An axiomatic approach to the concept of interaction among players in cooperative games , 1999, Int. J. Game Theory.

[24]  R. Baierlein Probability Theory: The Logic of Science , 2004 .

[25]  Aleksandr Yakovlevich Khinchin,et al.  Mathematical foundations of information theory , 1959 .

[26]  Leandro Pardo,et al.  Uncertainty of discrete stochastic systems: general theory and statistical inference , 1996, IEEE Trans. Syst. Man Cybern. Part A.

[27]  G. Klir,et al.  Uncertainty-based information: Elements of generalized information theory (studies in fuzziness and soft computing). , 1998 .

[28]  Wolfgang Sander,et al.  Characterizations of sum form information measures on open domains , 1997 .

[29]  M. Roubens,et al.  Entropy of Discrete Fuzzy Measures , 2000, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[30]  George J. Klir,et al.  Uncertainty-Based Information , 1999 .

[31]  L. S. Shapley,et al.  17. A Value for n-Person Games , 1953 .

[32]  菅野 道夫,et al.  Theory of fuzzy integrals and its applications , 1975 .