On lateral viscosity contrast in the mantle and the rheology of low-frequency geodynamics

SUMMARY Mantle-wide heterogeneity is largely controlled by deeply penetrating thermal convective currents. These thermal currents are likely to produce significant lateral variation in rheology, and this can profoundly influence overall material behaviour. How thermally related lateral viscosity variations impact models of glacio-isostatic and tidal deformation is largely unknown. An important step towards model improvement is to quantify, or bound, the actual viscosity variations that characterize the mantle. Simple scaling of viscosity to shear-wave velocity fluctuations yields map-views of longwavelength viscosity variation. These give a general quantitative description and aid in estimating the depth dependence of rheological heterogeneity throughout the mantle. The upper mantle is probably characterized by two to four orders of magnitude variation (peak-to-peak). Discrepant time-scales for rebounding Holocene shorelines of Hudson Bay and southern Iceland are consistent with this characterization. Results are given in terms of a local average viscosity ratio, Afji, of volumetric concentration, #i. For the upper mantle deeper than 340km the following reasonable limits are estimated for Afj x 0.01 5 # 5 0.15. A spectrum of ratios Afji < 0.1 at concentration level #i x 10-6-10-' in the lower mantle implies a spectrum of shorter time-scale deformational response modes for second-degree spherical harmonic deformations of the Earth. Although highly uncertain, this spectrum of spatial variation allows a purely Maxwellian viscoelastic rheology simultaneously to explain all solid tidal dispersion phenomena and long-term rebound-related mantle viscosity. Composite theory of multiphase viscoelastic media is used to demonstrate this effect.

[1]  M. Ritzert,et al.  Geoid effects in a convecting system with lateral viscosity variations , 1992 .

[2]  Amiya K. Mukherjee,et al.  High-Temperature Creep , 1975 .

[3]  David J. Stevenson,et al.  Effects of an endothermic phase transition at 670 km depth in a spherical model of convection in the Earth's mantle , 1993, Nature.

[4]  S. Okubo Theoretical and observed Q of the Chandler wobble-Love number approach. , 1982 .

[5]  G. Müller,et al.  Rheological models and interpretation of postglacial uplift , 1989 .

[6]  V. Dehant,et al.  The effect of' mantle inelasticity on tidal gravity: a comparison between the spherical and the elliptical Earth model , 1989 .

[7]  John C. Smith,et al.  Viscosity‐depth profile of the Earth's mantle: Effects of polymorphic phase transitions , 1977 .

[8]  F. Dahlen,et al.  The period and Q of the Chandler wobble , 1981 .

[9]  D. L. Anderson A Seismic Equation of State , 1967 .

[10]  T. Tanimoto Long-wavelength S-wave velocity structure throughout the mantle , 1990 .

[11]  Masayuki Obayashi,et al.  Subducting slabs stagnant in the mantle transition zone , 1992 .

[12]  O. Anderson,et al.  The relationship between shear and compressional velocities at high pressures: Reconciliation of seismic tomography and mineral physics , 1992 .

[13]  Robert W. Clayton,et al.  Constraints on the Structure of Mantle Convection Using Seismic Observations, Flow Models, and the Geoid , 1989 .

[14]  D. Yuen,et al.  Internal heating and thermal constraints on the mantle , 1989 .

[15]  Don L. Anderson,et al.  The frequency dependence of Q in the Earth and implications for mantle rheology and Chandler wobble , 1979 .

[16]  W. R. Peltier,et al.  Validation of the ICE‐3G Model of Würm‐Wisconsin Deglaciation using a global data base of relative sea level histories , 1992 .

[17]  S. Horiuchi,et al.  Deep structure of arc volcanoes as inferred from seismic observations , 1993, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[18]  I. Jasiuk,et al.  New results in the theory of elasticity for two-dimensional composites , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[19]  D. L. Anderson,et al.  Importance of Physical Dispersion in Surface Wave and Free Oscillation Problems: Review (Paper 6R0680) , 1977 .

[20]  N. A. Haskell The Motion of a Viscous Fluid Under a Surface Load , 1935 .

[21]  W. M. Kaula Minimal upper mantle temperature variations consistent with observed heat flow and plate velocities , 1983 .

[22]  B. Hobbs Constraints on the mechanism of deformation of olivine imposed by defect chemistry , 1983 .

[23]  S. Peacock Fluid Processes in Subduction Zones , 1990, Science.

[24]  A. Chopelas Sound velocities of MgO to very high compression , 1992 .

[25]  D. Robertson,et al.  Tidal variations in UT1 observed with very long baseline interferometry , 1994 .

[26]  M. Paterson,et al.  Seismic wave dispersion and attenuation in Åheim dunite: an experimental study , 1992 .

[27]  M. Thorpe,et al.  Elastic moduli of two‐dimensional composite continua with elliptical inclusions , 1985 .

[28]  G. D. Price,et al.  High-temperature creep of the perovskites CaTiO3 and NaNbO3 , 1992 .

[29]  D. Kohlstedt,et al.  High‐temperature creep of olivine single crystals 1. Mechanical results for buffered samples , 1991 .

[30]  S. Karato,et al.  Defect microdynamics in minerals and solid state mechanisms of seismic wave attenuation and velocity dispersion in the mantle , 1990 .

[31]  R. Christensen Theory of viscoelasticity : an introduction , 1971 .

[32]  Wolfgang G. Knauss,et al.  Finite Element Analysis of Multiphase Viscoelastic Solids , 1992 .

[33]  John C. Smith,et al.  A critical assessment of estimation methods for activation volume , 1981 .

[34]  W. Peltier,et al.  Mantle convection as a boundary layer phenomenon , 1982 .

[35]  O. Anderson,et al.  High‐temperature elastic constant data on minerals relevant to geophysics , 1992 .

[36]  K. Lambeck,et al.  Late Pleistocene and Holocene Sea-Level Change; Evidence for Lateral Mantle Viscosity Structure? , 1991 .

[37]  P. Gasperini,et al.  Lateral heterogeneities in mantle viscosity and post‐glacial rebound , 1989 .

[38]  T. Tanimoto,et al.  Ridges, hotspots and their interaction as observed in seismic velocity maps , 1992, Nature.

[39]  E. Ivins,et al.  On the Ellipticity of the Core-Mantle Boundary from Earth Nutations and Gravity , 1988 .

[40]  Richard M. Christensen,et al.  A critical evaluation for a class of micro-mechanics models , 1990 .

[41]  F. R. Boyd Compositional distinction between oceanic and cratonic lithosphere , 1989 .

[42]  T. Ahrens,et al.  Sound velocities at high pressure and temperature and their geophysical implications , 1992 .

[43]  Wei-jia Su,et al.  Degree 12 model of shear velocity heterogeneity in the mantle , 1994 .

[44]  T. Shankland,et al.  Geophysical Constraints on Partial Melt in the Upper Mantle (Paper 1R0664) , 1981 .

[45]  Wei-jia Su,et al.  Predominance of long-wavelength heterogeneity in the mantle , 1991, Nature.

[46]  P. Machetel Short-wavelength lower mantle seismic velocity anomalies , 1990 .

[47]  P. M. Mathews,et al.  Nutations of the Earth , 1992 .

[48]  A. Zerr,et al.  Melting of (Mg, Fe)SiO3-Perovskite to 625 Kilobars: Indication of a High Melting Temperature in the Lower Mantle , 1993, Science.

[49]  Erik R. Ivins,et al.  Deep mantle viscous structure with prior estimate and satellite constraint , 1993 .

[50]  D. L. Anderson,et al.  Plate Tectonics and Hotspots: The Third Dimension , 1992, Science.

[51]  M. Darot,et al.  Q−1 of forsterite single crystals , 1989 .

[52]  Graeme W. Milton,et al.  Invariant properties of the stress in plane elasticity and equivalence classes of composites , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[53]  G. Ranalli The Microphysical Approach to Mantle Rheology , 1991 .

[54]  Olafur Gudmundsson,et al.  Stochastic analysis of global traveltime data: mantle heterogeneity and random errors in the ISC data , 1990 .

[55]  R. Christensen,et al.  Solutions for effective shear properties in three phase sphere and cylinder models , 1979 .

[56]  Y. Ricard,et al.  Inferring the viscosity and the 3-D density structure of the mantle from geoid, topography and plate velocities , 1991 .

[57]  John M. Wahr,et al.  The effects of mantle anelasticity on nutations, earth tides, and tidal variations in rotation rate , 1986 .

[58]  R. Boehler,et al.  Thermal expansivity in the lower mantle , 1992 .

[59]  Yusheng Zhao,et al.  Phase Transition and Thermal Expansion of MgSiO3 Perovskite , 1991, Science.

[60]  A. Fröhlich,et al.  Theory of the rheological properties of dispersions , 1946, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[61]  S. Honda The RMS residual temperature in the convecting mantle and seismic heterogeneities. , 1987 .

[62]  S. Karato,et al.  Importance of anelasticity in the interpretation of seismic tomography , 1993 .

[63]  J. Oldroyd The rheology of some two-dimensional disperse systems , 1957, Mathematical Proceedings of the Cambridge Philosophical Society.

[64]  Hiroki Sato Viscosity of the upper mantle from laboratory creep and anelasticity measurements in peridotite at high pressure and temperature , 1991 .

[65]  H. Green,et al.  Dependence of creep in olivine on homologous temperature and its implications for flow in the mantle , 1987, Nature.

[66]  D. Yuen,et al.  Constraints on short-term mantle rheology from the J ̇ observation and the dispersion of the 18.6 y tidal Love number , 1985 .

[67]  David A. Yuen,et al.  Lower mantle thermal structure deduced from seismic tomography, mineral physics and numerical modelling , 1994 .

[68]  M. Watkins,et al.  Long term changes in the Earth's shape, rotation, and geocenter , 1993 .

[69]  J. Mitrovica Reply to comment by L. Cathles and W. Fjeldskaar on 'The inference of mantle viscosity from an inversion of the Fennoscandian relaxation spectrum' , 1993 .

[70]  David A. Yuen,et al.  Normal modes of the viscoelastic earth , 1982 .

[71]  S. M. Nakiboglu,et al.  Long‐period Love numbers and their frequency dependence due to dispersion effects , 1983 .

[72]  F. Sigmundsson Post‐glacial rebound and asthenosphere viscosity in Iceland , 1991 .

[73]  Don L. Anderson,et al.  A seismic equation of state II. Shear properties and thermodynamics of the lower mantle , 1987 .

[74]  D. L. Anderson,et al.  Absorption band Q model for the Earth , 1982 .

[75]  G. Kent,et al.  Distribution of magma beneath the East Pacific Rise between the Clipperton Transform and the 9°17′N Deval from forward modeling of common depth point data , 1993 .

[76]  Z. Hashin Analysis of Composite Materials—A Survey , 1983 .

[77]  T. Kikegawa,et al.  Thermal expansion of MgSiO3 perovskite at 20.5 GPa , 1994 .

[78]  Keiiti Aki,et al.  Three‐dimensional seismic inhomogeneities in the lithosphere and asthenosphere: Evidence for decoupling in the lithosphere and flow in the asthenosphere , 1982 .

[79]  Guy Masters,et al.  An inversion for radial viscosity structure using seismic tomography , 1992 .