Inverse Littlewood-Offord problems and The Singularity of Random Symmetric Matrices
暂无分享,去创建一个
[1] P. Erdös. On a lemma of Littlewood and Offord , 1945 .
[2] D. Kleitman. On a lemma of Littlewood and Offord on the distributions of linear combinations of vectors , 1970 .
[3] András Sárközy,et al. Über ein Problem von Erdös und Moser , 1965 .
[4] Kevin P. Costello. Bilinear and quadratic variants on the Littlewood-Offord problem , 2009 .
[5] C. Esseen. On the Kolmogorov-Rogozin inequality for the concentration function , 1966 .
[6] Terence Tao,et al. Additive combinatorics , 2007, Cambridge studies in advanced mathematics.
[7] B. A. Rogozin. An Estimate for Concentration Functions , 1961 .
[8] Béla Bollobás,et al. Random Graphs , 1985 .
[9] Richard P. Stanley,et al. Weyl Groups, the Hard Lefschetz Theorem, and the Sperner Property , 1980, SIAM J. Algebraic Discret. Methods.
[10] Symmetrization and concentration inequalities for multilinear forms with applications to zero-one laws for Lévy chaos , 1996 .
[11] J. Littlewood,et al. On the Number of Real Roots of a Random Algebraic Equation , 1938 .
[12] Andrew M. Odlyzko,et al. On subspaces spanned by random selections of plus/minus 1 vectors , 1988, Journal of combinatorial theory. Series A.
[13] Kevin P. Costello,et al. Random symmetric matrices are almost surely nonsingular , 2005, math/0505156.
[14] M. Kanter. Probability inequalities for convex sets and multidimensional concentration functions , 1976 .
[15] T. Tao,et al. On the singularity probability of random Bernoulli matrices , 2005, math/0501313.
[16] A. Kolmogorov. Two Uniform Limit Theorems for Sums of Independent Random Variables , 1956 .
[17] Jean Bourgain,et al. On the singularity probability of discrete random matrices , 2009, 0905.0461.
[18] Van H. Vu. Inverse Littlewood-Offord theorems and the condition number of random discrete matrices , 2009 .
[19] G. Halász. Estimates for the concentration function of combinatorial number theory and probability , 1977 .
[20] Terence Tao,et al. A sharp inverse Littlewood-Offord theorem , 2010 .
[21] E. Szemerédi,et al. On the probability that a random ±1-matrix is singular , 1995 .