Inverse Littlewood-Offord problems and The Singularity of Random Symmetric Matrices

Let $M_n$ denote a random symmetric $n$ by $n$ matrix, whose upper diagonal entries are iid Bernoulli random variables (which take value -1 and 1 with probability 1/2). Improving the earlier result by Costello, Tao and Vu, we show that $M_n$ is non-singular with probability $1-O(n^{-C})$ for any positive constant $C$. The proof uses an inverse Littlewood-Offord result for quadratic forms, which is of interest of its own.

[1]  P. Erdös On a lemma of Littlewood and Offord , 1945 .

[2]  D. Kleitman On a lemma of Littlewood and Offord on the distributions of linear combinations of vectors , 1970 .

[3]  András Sárközy,et al.  Über ein Problem von Erdös und Moser , 1965 .

[4]  Kevin P. Costello Bilinear and quadratic variants on the Littlewood-Offord problem , 2009 .

[5]  C. Esseen On the Kolmogorov-Rogozin inequality for the concentration function , 1966 .

[6]  Terence Tao,et al.  Additive combinatorics , 2007, Cambridge studies in advanced mathematics.

[7]  B. A. Rogozin An Estimate for Concentration Functions , 1961 .

[8]  Béla Bollobás,et al.  Random Graphs , 1985 .

[9]  Richard P. Stanley,et al.  Weyl Groups, the Hard Lefschetz Theorem, and the Sperner Property , 1980, SIAM J. Algebraic Discret. Methods.

[10]  Symmetrization and concentration inequalities for multilinear forms with applications to zero-one laws for Lévy chaos , 1996 .

[11]  J. Littlewood,et al.  On the Number of Real Roots of a Random Algebraic Equation , 1938 .

[12]  Andrew M. Odlyzko,et al.  On subspaces spanned by random selections of plus/minus 1 vectors , 1988, Journal of combinatorial theory. Series A.

[13]  Kevin P. Costello,et al.  Random symmetric matrices are almost surely nonsingular , 2005, math/0505156.

[14]  M. Kanter Probability inequalities for convex sets and multidimensional concentration functions , 1976 .

[15]  T. Tao,et al.  On the singularity probability of random Bernoulli matrices , 2005, math/0501313.

[16]  A. Kolmogorov Two Uniform Limit Theorems for Sums of Independent Random Variables , 1956 .

[17]  Jean Bourgain,et al.  On the singularity probability of discrete random matrices , 2009, 0905.0461.

[18]  Van H. Vu Inverse Littlewood-Offord theorems and the condition number of random discrete matrices , 2009 .

[19]  G. Halász Estimates for the concentration function of combinatorial number theory and probability , 1977 .

[20]  Terence Tao,et al.  A sharp inverse Littlewood-Offord theorem , 2010 .

[21]  E. Szemerédi,et al.  On the probability that a random ±1-matrix is singular , 1995 .