An Improved Particle Swarm Optimization for Solving Bilevel Multiobjective Programming Problem

An improved particle swarm optimization (PSO) algorithm is proposed for solving bilevel multiobjective programming problem (BLMPP). For such problems, the proposed algorithm directly simulates the decision process of bilevel programming, which is different from most traditional algorithms designed for specific versions or based on specific assumptions. The BLMPP is transformed to solve multiobjective optimization problems in the upper level and the lower level interactively by an improved PSO. And a set of approximate Pareto optimal solutions for BLMPP is obtained using the elite strategy. This interactive procedure is repeated until the accurate Pareto optimal solutions of the original problem are found. Finally, some numerical examples are given to illustrate the feasibility of the proposed algorithm.

[1]  Patrice Marcotte,et al.  Bilevel programming: A survey , 2005, 4OR.

[2]  Kalyanmoy Deb,et al.  Solving Bilevel Multi-Objective Optimization Problems Using Evolutionary Algorithms , 2009, EMO.

[3]  Tharam S. Dillon,et al.  Decentralized multi-objective bilevel decision making with fuzzy demands , 2007, Knowl. Based Syst..

[4]  Rajkumar Roy,et al.  Bi-level optimisation using genetic algorithm , 2002, Proceedings 2002 IEEE International Conference on Artificial Intelligence Systems (ICAIS 2002).

[5]  G. Eichfelder Solving Nonlinear Multiobjective Bilevel Optimization Problems with Coupled Upper Level Constraints , 2007 .

[6]  K. Deb,et al.  An Evolutionary Approach for Bilevel Multi-objective Problems , 2009 .

[7]  Ankur Sinha,et al.  Bilevel Multi-objective Optimization Problem Solving Using Progressively Interactive EMO , 2011, EMO.

[8]  R. J. Kuo,et al.  Application of particle swarm optimization algorithm for solving bi-level linear programming problem , 2009, Comput. Math. Appl..

[9]  Hui-Ming Wee,et al.  Particle swarm optimization for bi-level pricing problems in supply chains , 2011, J. Glob. Optim..

[10]  Ibrahim A. Baky,et al.  Interactive balance space approach for solving multi-level multi-objective programming problems , 2007, Inf. Sci..

[11]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[12]  Gabriele Eichfelder,et al.  Multiobjective bilevel optimization , 2010, Math. Program..

[13]  Kalyanmoy Deb,et al.  An Efficient and Accurate Solution Methodology for Bilevel Multi-Objective Programming Problems Using a Hybrid Evolutionary-Local-Search Algorithm , 2010, Evolutionary Computation.

[14]  Ue-Pyng Wen,et al.  Linear Bi-level Programming Problems — A Review , 1991 .

[15]  Yuping Wang,et al.  An evolutionary algorithm for solving nonlinear bilevel programming based on a new constraint-handling scheme , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[16]  Zhongping Wan,et al.  A fuzzy interactive method for a class of bilevel multiobjective programming problem , 2011, Expert Syst. Appl..

[17]  Yafeng Yin,et al.  Genetic-Algorithms-Based Approach for Bilevel Programming Models , 2000 .

[18]  X Shi,et al.  Interactive bilevel multi-objective decision making , 1997 .

[19]  Xinping Shi,et al.  Model and interactive algorithm of bi-level multi-objective decision-making with multiple interconnected decision makers , 2001 .

[20]  M. Sakawa,et al.  Stackelberg Solutions to Multiobjective Two-Level Linear Programming Problems , 1999 .

[21]  Andrew Koh Solving transportation bi-level programs with Differential Evolution , 2007, 2007 IEEE Congress on Evolutionary Computation.

[22]  Xiangyong Li,et al.  A Hierarchical Particle Swarm Optimization for Solving Bilevel Programming Problems , 2006, ICAISC.

[23]  Paul H. Calamai,et al.  Bilevel and multilevel programming: A bibliography review , 1994, J. Glob. Optim..

[24]  S. Scholtes,et al.  Nondifferentiable and two-level mathematical programming , 1997 .

[25]  Patrice Marcotte,et al.  An overview of bilevel optimization , 2007, Ann. Oper. Res..

[26]  Bethany L. Nicholson,et al.  Mathematical Programs with Equilibrium Constraints , 2021, Pyomo — Optimization Modeling in Python.

[27]  Stephan Dempe,et al.  Foundations of Bilevel Programming , 2002 .

[28]  Kalyanmoy Deb,et al.  Constructing test problems for bilevel evolutionary multi-objective optimization , 2009, 2009 IEEE Congress on Evolutionary Computation.

[29]  Kalyanmoy Deb,et al.  Towards Understanding Evolutionary Bilevel Multi-Objective Optimization Algorithm , 2009 .

[30]  S. Dempe Annotated Bibliography on Bilevel Programming and Mathematical Programs with Equilibrium Constraints , 2003 .

[31]  G. Anandalingam,et al.  Genetic algorithm based approach to bi-level linear programming , 1994 .

[32]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[33]  Jonathan F. Bard,et al.  Practical Bilevel Optimization: Algorithms and Applications , 1998 .