A native oxide high-κ gate dielectric for two-dimensional electronics

[1]  Jinxiong Wu,et al.  Wafer-Scale Growth of Single-Crystal 2D Semiconductor on Perovskite Oxides for High-Performance Transistors. , 2019, Nano letters.

[2]  Lain‐Jong Li,et al.  How 2D semiconductors could extend Moore’s law , 2019, Nature.

[3]  S. Haigh,et al.  Laser-writable high-k dielectric for van der Waals nanoelectronics , 2018, Science Advances.

[4]  B. Lee,et al.  HfO2/HfS2 hybrid heterostructure fabricated via controllable chemical conversion of two-dimensional HfS2. , 2018, Nanoscale.

[5]  X. Duan,et al.  Solution-processable 2D semiconductors for high-performance large-area electronics , 2018, Nature.

[6]  Jinxiong Wu,et al.  Electronic structures and unusually robust bandgap in an ultrahigh-mobility layered oxide semiconductor, Bi2O2Se , 2018, Science Advances.

[7]  M. Cheng,et al.  Thermally Oxidized Two-dimensional TaS2 as a High-\k{appa} Gate Dielectric for MoS2 Field-Effect Transistors. , 2018, 1808.08303.

[8]  X. Duan,et al.  Two-dimensional transistors beyond graphene and TMDCs. , 2018, Chemical Society reviews.

[9]  Yayu Wang,et al.  Quantitative measurements of nanoscale permittivity and conductivity using tuning-fork-based microwave impedance microscopy. , 2018, The Review of scientific instruments.

[10]  Jinxiong Wu,et al.  Chemical Patterning of High‐Mobility Semiconducting 2D Bi2O2Se Crystals for Integrated Optoelectronic Devices , 2017, Advanced materials.

[11]  Zhi-Xun Shen,et al.  HfSe2 and ZrSe2: Two-dimensional semiconductors with native high-κ oxides , 2017, Science Advances.

[12]  M. Cheng,et al.  Thermally oxidized 2D TaS2 as a high-κ gate dielectric for MoS2 field-effect transistors , 2017 .

[13]  Jinxiong Wu,et al.  High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se. , 2017, Nature nanotechnology.

[14]  Lianmao Peng,et al.  Scaling carbon nanotube complementary transistors to 5-nm gate lengths , 2017, Science.

[15]  Moon J. Kim,et al.  MoS2 transistors with 1-nanometer gate lengths , 2016, Science.

[16]  K. Novoselov,et al.  High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe. , 2016, Nature nanotechnology.

[17]  Hua Zhang,et al.  Two-dimensional semiconductors for transistors , 2016 .

[18]  Lianmao Peng,et al.  Highly Uniform Carbon Nanotube Field-Effect Transistors and Medium Scale Integrated Circuits. , 2016, Nano letters.

[19]  R. Wallace,et al.  Remote Plasma Oxidation and Atomic Layer Etching of MoS2. , 2016, ACS applied materials & interfaces.

[20]  Aaron D. Franklin,et al.  Nanomaterials in transistors: From high-performance to thin-film applications , 2015, Science.

[21]  A. Pak,et al.  Thickness-Dependent Dielectric Constant of Few-Layer In₂Se₃ Nanoflakes. , 2015, Nano letters.

[22]  Kazuhito Tsukagoshi,et al.  Self-limiting layer-by-layer oxidation of atomically thin WSe2. , 2015, Nano letters.

[23]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[24]  H.-S. Philip Wong,et al.  Carbon nanotube computer , 2013, Nature.

[25]  K. Novoselov,et al.  A roadmap for graphene , 2012, Nature.

[26]  Isabelle Ferain,et al.  Multigate transistors as the future of classical metal–oxide–semiconductor field-effect transistors , 2011, Nature.

[27]  Jack C. Lee,et al.  Effects of gate-first and gate-last process on interface quality of In0.53Ga0.47As metal-oxide-semiconductor capacitors using atomic-layer-deposited Al2O3 and HfO2 oxides , 2009 .

[28]  Tomonori Nishimura,et al.  Opportunities and challenges for Ge CMOS - Control of interfacing field on Ge is a key (Invited Paper) , 2009 .

[29]  G. Scuseria,et al.  Importance of short-range versus long-range Hartree-Fock exchange for the performance of hybrid density functionals. , 2006, The Journal of chemical physics.

[30]  Charles M. Lieber,et al.  Ge/Si nanowire heterostructures as high-performance field-effect transistors , 2006, Nature.

[31]  I. Aberg,et al.  High electron and hole mobility enhancements in thin-body strained Si/strained SiGe/strained Si heterostructures on insulator , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[32]  Goutam Kumar Dalapati,et al.  Gate dielectrics on strained-Si/SiGe heterolayers , 2004 .

[33]  Akira Ohtomo,et al.  A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface , 2004, Nature.

[34]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[35]  Z. R. Wasilewski,et al.  Thermal Oxidation of III-V Materials and Heterostructures , 2002 .

[36]  Raghaw Rai,et al.  Thermodynamic stability of high-K dielectric metal oxides ZrO2 and HfO2 in contact with Si and SiO2 , 2002 .

[37]  Jon-Paul Maria,et al.  Alternative dielectrics to silicon dioxide for memory and logic devices , 2000, Nature.

[38]  D. Muller,et al.  The electronic structure at the atomic scale of ultrathin gate oxides , 1999, Nature.

[39]  Georg Kresse,et al.  Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements , 1994 .

[40]  J.S. Kilby,et al.  Invention of the integrated circuit , 1976, IEEE Transactions on Electron Devices.

[41]  A. Asenov,et al.  High Mobility III-V MOSFETs For RF and Digital Applications , 2007, 2007 IEEE International Electron Devices Meeting.

[42]  Peter van Zant Microchip fabrication : a practical guide to semiconductor processing , 2004 .