Ready, Steady, Touch!

A finger held in the air exhibits microvibrations, which are reduced when it touches a static object. When a finger moves along a surface, the friction between them produces vibrations, which can not be produced with a free-moving finger in the air. With an inertial measurement unit (IMU) capturing such motion characteristics, we demonstrate the feasibility to detect contact between the finger and static objects. We call our technique ActualTouch. Studies show that a single nail-mounted IMU on the index finger provides sufficient data to train a binary touch status classifier (i.e., touch vs. no-touch), with an accuracy above 95%, generalised across users. This model, trained on a rigid tabletop surface, was found to retain an average accuracy of 96% for 7 other types of everyday surfaces with varying rigidity, and in walking and sitting scenarios where no touch occurred. ActualTouch can be combined with other interaction techniques, such as in a uni-stroke gesture recogniser on arbitrary surfaces, where touch status from ActualTouch is used to delimit the motion gesture data that feed into the recogniser. We demonstrate the potential of ActualTouch in a range of scenarios, such as interaction for augmented reality applications, and leveraging daily surfaces and objects for ad-hoc interactions.

[1]  Christopher M. Schlick,et al.  Evaluating swabbing: a touchscreen input method for elderly users with tremor , 2011, CHI.

[2]  Gregory D. Abowd,et al.  FingOrbits: interaction with wearables using synchronized thumb movements , 2017, SEMWEB.

[3]  Ivan Poupyrev,et al.  Touché: enhancing touch interaction on humans, screens, liquids, and everyday objects , 2012, CHI.

[4]  Gierad Laput,et al.  SkinTrack: Using the Body as an Electrical Waveguide for Continuous Finger Tracking on the Skin , 2016, CHI.

[5]  Andreu Català,et al.  Basketball Activity Recognition using Wearable Inertial Measurement Units , 2015, Interacción.

[6]  Desney S. Tan,et al.  FingerIO: Using Active Sonar for Fine-Grained Finger Tracking , 2016, CHI.

[7]  Yvonne Rogers,et al.  Fat Finger Worries: How Older and Younger Users Physically Interact with PDAs , 2005, INTERACT.

[8]  Gierad Laput,et al.  ViBand: High-Fidelity Bio-Acoustic Sensing Using Commodity Smartwatch Accelerometers , 2016, UIST.

[9]  John Williamson Fingers of a Hand Oscillate Together: Phase Syncronisation of Tremor in Hover Touch Sensing , 2016, CHI.

[10]  Niels Henze,et al.  A smartphone prototype for touch interaction on the whole device surface , 2017, MobileHCI.

[11]  Desney S. Tan,et al.  Skinput: appropriating the body as an input surface , 2010, CHI.

[12]  Masashi Sugano,et al.  A Noncontact Tremor Measurement System Using Leap Motion , 2017 .

[13]  Yunhui Liu,et al.  MIDS: micro input devices system using MEMS sensors , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[14]  Gerhard Tröster,et al.  SwimMaster: a wearable assistant for swimmer , 2009, UbiComp.

[15]  Robert Xiao,et al.  Supporting Responsive Cohabitation Between Virtual Interfaces and Physical Objects on Everyday Surfaces , 2017, PACMHCI.

[16]  Jan O. Borchers,et al.  BackXPress: Using Back-of-Device Finger Pressure to Augment Touchscreen Input on Smartphones , 2017, CHI.

[17]  Amy Banic,et al.  3DTouch: A wearable 3D input device for 3D applications , 2015, 2015 IEEE Virtual Reality (VR).

[18]  Kent Lyons,et al.  SkinWire: Fabricating a Self-Contained On-Skin PCB for the Hand , 2018, Proc. ACM Interact. Mob. Wearable Ubiquitous Technol..

[19]  Masatoshi Ishikawa,et al.  Anywhere surface touch: utilizing any surface as an input area , 2014, AH.

[20]  Tanja Schultz,et al.  Airwriting: Hands-Free Mobile Text Input by Spotting and Continuous Recognition of 3d-Space Handwriting with Inertial Sensors , 2012, 2012 16th International Symposium on Wearable Computers.

[21]  Iain Murray,et al.  Human activity recognition using thigh angle derived from single thigh mounted IMU data , 2014, 2014 International Conference on Indoor Positioning and Indoor Navigation (IPIN).

[22]  Xing-Dong Yang,et al.  Magic finger: always-available input through finger instrumentation , 2012, UIST.

[23]  Robert Xiao,et al.  MRTouch: Adding Touch Input to Head-Mounted Mixed Reality , 2018, IEEE Transactions on Visualization and Computer Graphics.

[24]  Gierad Laput,et al.  EM-Sense: Touch Recognition of Uninstrumented, Electrical and Electromechanical Objects , 2015, UIST.

[25]  Xun Wang,et al.  Tremor detection using smartphone-based acoustic sensing , 2017, UbiComp/ISWC Adjunct.

[26]  Suranga Nanayakkara,et al.  GestAKey: Get More Done with Just-a-Key on a Keyboard , 2017, UIST.

[27]  Ivan Poupyrev,et al.  Soli , 2016, ACM Trans. Graph..

[28]  Enrico Rukzio,et al.  Improving Input Accuracy on Smartphones for Persons who are Affected by Tremor using Motion Sensors , 2018, Proc. ACM Interact. Mob. Wearable Ubiquitous Technol..

[29]  H. Rohracher,et al.  Microvibration, Permanent Muscle-Activity and Constancy of Body-Temperature , 1964, Perceptual and motor skills.

[30]  Gierad Laput,et al.  Sensing Fine-Grained Hand Activity with Smartwatches , 2019, CHI.

[31]  Chris Harrison,et al.  Scratch input: creating large, inexpensive, unpowered and mobile finger input surfaces , 2008, UIST '08.

[32]  Sven Behnke,et al.  Evaluation of Pooling Operations in Convolutional Architectures for Object Recognition , 2010, ICANN.

[33]  Suranga Nanayakkara,et al.  GestAKey: Touch Interaction on Individual Keycaps , 2018, CHI.

[34]  Hai Su,et al.  An Optimized Method for the Limb Tremor Measurement , 2018, ICMHI '18.

[35]  Dan Morris,et al.  RecoFit: using a wearable sensor to find, recognize, and count repetitive exercises , 2014, CHI.

[36]  William Johnston,et al.  Wearable Inertial Sensor Systems for Lower Limb Exercise Detection and Evaluation: A Systematic Review , 2018, Sports Medicine.

[37]  Kenji Mase,et al.  Activity and Location Recognition Using Wearable Sensors , 2002, IEEE Pervasive Comput..

[38]  Shuchang Xu,et al.  Accurate and Low-Latency Sensing of Touch Contact on Any Surface with Finger-Worn IMU Sensor , 2019, UIST.

[39]  Geoffrey E. Hinton,et al.  Rectified Linear Units Improve Restricted Boltzmann Machines , 2010, ICML.

[40]  Buntarou Shizuki,et al.  Touch & activate: adding interactivity to existing objects using active acoustic sensing , 2013, UIST.

[41]  Yang Zhang,et al.  Pulp Nonfiction: Low-Cost Touch Tracking for Paper , 2018, CHI.

[42]  Gregory D. Abowd,et al.  FingerSound , 2017, Proc. ACM Interact. Mob. Wearable Ubiquitous Technol..

[43]  Xing-Dong Yang,et al.  Exploring Design Factors for Transforming Passive Vibration Signals into Smartwear Interactions , 2016, NordiCHI.

[44]  Robert Xiao,et al.  DIRECT: Making Touch Tracking on Ordinary Surfaces Practical with Hybrid Depth-Infrared Sensing , 2016, ISS.

[45]  Jessica K. Hodgins,et al.  Automated Tremor Detection in Parkinson's Disease Using Accelerometer Signals , 2018, 2018 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE).

[46]  Wen-Huang Cheng,et al.  FingerPad: private and subtle interaction using fingertips , 2013, UIST.

[47]  Pattie Maes,et al.  Mouseless: a computer mouse as small as invisible , 2011, CHI EA '11.

[48]  Desney S. Tan,et al.  Your noise is my command: sensing gestures using the body as an antenna , 2011, CHI.

[49]  Roderick Murray-Smith,et al.  Muscle tremor as an input mechanism , 2004 .

[50]  Joseph A. Paradiso,et al.  Tracking and characterizing knocks atop large interactive displays , 2005 .

[51]  Ravin Balakrishnan,et al.  Asterisk and Obelisk: Motion Codes for Passive Tagging , 2018, UIST.

[52]  Ming Yang,et al.  Continuous acoustic source tracking for tangible acoustic interfaces , 2013 .

[53]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[54]  Tanja Schultz,et al.  Airwriting: a wearable handwriting recognition system , 2013, Personal and Ubiquitous Computing.

[55]  Eric C. Larson,et al.  HeatWave: thermal imaging for surface user interaction , 2011, CHI.

[56]  Da-Yuan Huang,et al.  Nail+: sensing fingernail deformation to detect finger force touch interactions on rigid surfaces , 2016, MobileHCI.

[57]  Joseph A. Paradiso,et al.  NailO: Fingernails as an Input Surface , 2015, CHI.

[58]  Tanja Schultz,et al.  Airwriting recognition using wearable motion sensors , 2010, AH.

[59]  Yang Zhang,et al.  Wall++: Room-Scale Interactive and Context-Aware Sensing , 2018, CHI.

[60]  Ken Hinckley,et al.  LightRing: always-available 2D input on any surface , 2014, UIST.

[61]  Jun Rekimoto,et al.  SmartSkin: an infrastructure for freehand manipulation on interactive surfaces , 2002, CHI.

[62]  R. Elble Physiologic and essential tremor , 1986, Neurology.

[63]  Niels Henze,et al.  InfiniTouch: Finger-Aware Interaction on Fully Touch Sensitive Smartphones , 2018, UIST.

[64]  Shaohan Hu,et al.  DeepSense: A Unified Deep Learning Framework for Time-Series Mobile Sensing Data Processing , 2016, WWW.

[65]  Gierad Laput,et al.  Electrick: Low-Cost Touch Sensing Using Electric Field Tomography , 2017, CHI.

[66]  M H Schieber,et al.  Quantifying the Independence of Human Finger Movements: Comparisons of Digits, Hands, and Movement Frequencies , 2000, The Journal of Neuroscience.

[67]  Joseph A. Paradiso,et al.  Passive acoustic knock tracking for interactive windows , 2002, CHI Extended Abstracts.

[68]  Jürgen Steimle,et al.  ObjectSkin: Augmenting Everyday Objects with Hydroprinted Touch Sensors and Displays , 2017, Proc. ACM Interact. Mob. Wearable Ubiquitous Technol..