Using a statistical shape model to extract sulcal curves on the outer cortex of the human brain
暂无分享,去创建一个
[1] Timothy F. Cootes,et al. Active Appearance Models , 1998, ECCV.
[2] D. V. van Essen,et al. A tension-based theory of morphogenesis and compact wiring in the central nervous system. , 1997, Nature.
[3] Dinggang Shen,et al. An Adaptive-Focus Deformable Model Using Statistical and Geometric Information , 2000, IEEE Trans. Pattern Anal. Mach. Intell..
[4] Robert T. Schultz,et al. Registration of Cortical Anatomical Structures via Robust 3D Point Matching , 1999, IPMI.
[5] D. V. van Essen,et al. Computerized Mappings of the Cerebral Cortex: A Multiresolution Flattening Method and a Surface-Based Coordinate System , 1996, Journal of Cognitive Neuroscience.
[6] Christopher J. Taylor,et al. A Framework for Automatic Landmark Identification Using a New Method of Nonrigid Correspondence , 2000, IEEE Trans. Pattern Anal. Mach. Intell..
[7] H. Duvernoy,et al. The Human Brain: Surface, Three-Dimensional Sectional Anatomy with MRI, and Blood Supply , 1999 .
[8] Paul M. Thompson,et al. A surface-based technique for warping three-dimensional images of the brain , 1996, IEEE Trans. Medical Imaging.
[9] Christos Davatzikos,et al. Spatial Transformation and Registration of Brain Images Using Elastically Deformable Models , 1997, Comput. Vis. Image Underst..
[10] Anders M. Dale,et al. Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.
[11] Christos Davatzikos,et al. Using a deformable surface model to obtain a shape representation of the cortex , 1996, IEEE Trans. Medical Imaging.
[12] Christopher J. Taylor,et al. Using Local Geometry to Build 3D Sulcal Models , 1999, IPMI.
[13] D. V. Essen,et al. A tension-based theory of morphogenesis and compact wiring in the central nervous system , 1997, Nature.
[14] D. Louis Collins,et al. Automatic Identification of Cortical Sulci Using a 3D Probabilistic Atlas , 1998, MICCAI.
[15] Xiao Han,et al. Statistical Study on Cortical Sulci of Human Brains , 2001, IPMI.
[16] Christos Davatzikos,et al. Hierarchical Matching of Cortical Features for Deformable Brain Image Registration , 1999, IPMI.
[17] Gabriele Lohmann,et al. Automatic Detection of Sulcal Bottom Lines in MR Images of the Human Brain , 1997, IPMI.
[18] A. Toga,et al. High-Resolution Random Mesh Algorithms for Creating a Probabilistic 3D Surface Atlas of the Human Brain , 1996, NeuroImage.
[19] Christos Davatzikos,et al. Finding parametric representations of the cortical sulci using an active contour model , 1997, Medical Image Anal..
[20] Dinggang Shen,et al. Adaptive-Focus Statistical Shape Model for Segmentation of 3D MR Structures , 2000, MICCAI.
[21] A. Dale,et al. Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.
[22] R. Woods,et al. Mathematical/computational challenges in creating deformable and probabilistic atlases of the human brain , 2000, Human brain mapping.
[23] G. Bruyn. Atlas of the Cerebral Sulci, M. Ono, S. Kubik, Chad D. Abernathey (Eds.). Georg Thieme Verlag, Stuttgart, New York (1990), 232, DM 298 , 1990 .
[24] Timothy F. Cootes,et al. The Use of Active Shape Models for Locating Structures in Medical Images , 1993, IPMI.
[25] Robert T. Schultz,et al. A New Approach to 3D Sulcal Ribbon Finding from MR Images , 1999, MICCAI.
[26] 小野 道夫,et al. Atlas of the Cerebral Sulci , 1990 .
[27] S. Resnick,et al. One-year age changes in MRI brain volumes in older adults. , 2000, Cerebral cortex.