Magnetization transfer imaging of multiple sclerosis

While conventional magnetic resonance imaging (MRI) measures signal primarily from the hydrogen nuclei of water, magnetization transfer (MT) MRI indirectly detects macromolecular associated hydrogen nuclei via their magnetic interaction with the observable water. In the normal adult CNS, white matter exhibits the largest MT effect due to the macromolecular content of the highly structured and lipid rich myelin. Pathologies which alter the structural integrity and the relative macromolecular-water composition, such as multiple sclerosis (MS), therefore show abnormal MT. Conventional MRI, which has a high MS lesion detection sensitivity but poor specificity in terms of differentiating the pathological state of a plaque, can thus be supplemented by MT to provide more specific information on the extent of demyelination and axonal loss. In this paper we review the basic concepts of MT imaging and its role in MS lesion characterization. La risonanza magnetica per immagini (RMI) convenzionale fornisce informazioni sulla base del segnale derivante dai nuclei di idrogeno dell'acqua. Al contrario lamagnetization transfer (MT) RMI misura il segnale di nuclei dell'idrogeno associati a macromolecole tramite la loro interazione con l'acqua. Nel sistema nervoso centrale di un soggetto adulto normale, la sostanza bianca evidenzia il maggiore effetto di MT a causa dell'alto contenuto di macromolecole presente nella struttura complessa e ricca in lipidi della mielina. Condizioni patologiche in cui è alterata l'integrità e la composizione del binomio acqua-macromolecole mostrano un'alterata MT. Un valido esempio è rappresentato dalla sclerosi multipla, condizione patologica in cui la RMI convenzionale ha una alta sensitività per la individuazione della lesione, ma una bassa specificità nel differenziare lo stato patologico della placca. Al contrario, l'uso della MT RMI può fornire informazioni più specifiche riguardo il grado di demielinizzazione e perdita assonale. In questa review verranno trattati i concetti base della MT ed il suo ruolo nella caratterizzazione delle lesioni cerebrali da sclerosi multipla.

[1]  P M Matthews,et al.  Proton magnetic resonance spectroscopic imaging for metabolic characterization of demyelinating plaques , 1992, Annals of neurology.

[2]  R M Henkelman,et al.  Quantitative interpretation of magnetization transfer , 1993, Magnetic resonance in medicine.

[3]  G. Barker,et al.  Correlation of magnetization transfer ration with clinical disability in multiple sclerosis , 1994, Annals of neurology.

[4]  C. Metz,et al.  Magnetization transfer: a potential method to determine the age of multiple sclerosis lesions. , 1994, AJNR. American journal of neuroradiology.

[5]  S E Harms,et al.  Three-dimensional gadolinium-enhanced MR imaging of the breast: pulse sequence with fat suppression and magnetization transfer contrast. Work in progress. , 1991, Radiology.

[6]  R E Lenkinski,et al.  Correlation of spectroscopy and magnetization transfer imaging in the evaluation of demyelinating lesions and normal appearing white matter in multiple sclerosis , 1994, Magnetic resonance in medicine.

[7]  M. Lipton,et al.  Synergistic enhancement of MRI with Gd-DTPA and magnetization transfer. , 1992, Journal of computer assisted tomography.

[8]  Sidney A. Simon,et al.  Dynamic and chemical factors affecting water proton relaxation by macromolecules , 1992 .

[9]  R M Henkelman,et al.  Relaxivity and magnetization transfer of white matter lipids at MR imaging: importance of cerebrosides and pH. , 1994, Radiology.

[10]  R I Grossman,et al.  Dyke Award paper. MR of wallerian degeneration in the feline visual system: characterization by magnetization transfer rate with histopathologic correlation. , 1994, AJNR. American journal of neuroradiology.

[11]  G. B. Pike,et al.  Pulsed magnetization transfer contrast in gradient echo imaging: A two‐pool analytic description of signal response , 1996, Magnetic resonance in medicine.

[12]  R S Balaban,et al.  Quantitative 1H magnetization transfer imaging in vivo , 1991, Magnetic resonance in medicine.

[13]  R. Bryant,et al.  Nuclear magnetic cross-relaxation spectroscopy , 1990 .

[14]  V. Mathews,et al.  Improved detection of gadolinium enhancement using magnetization transfer imaging. , 1994, Neuroimaging clinics of North America.

[15]  A M Aisen,et al.  Magnetization transfer contrast with periodic pulsed saturation. , 1992, Radiology.

[16]  R S Balaban,et al.  Lipid bilayer and water proton magnetization transfer: Effect of cholesterol , 1991, Magnetic resonance in medicine.

[17]  G. B. Pike,et al.  Magnetization transfer MR of the normal adult brain. , 1995, AJNR. American journal of neuroradiology.

[18]  R. Balaban,et al.  Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo , 1989, Magnetic resonance in medicine.

[19]  G S Francis,et al.  Combined magnetization transfer and proton spectroscopic imaging in the assessment of pathologic brain lesions in multiple sclerosis. , 1999, AJNR. American journal of neuroradiology.

[20]  Bob S. Hu,et al.  Pulsed magnetization transfer spin‐echo MR imaging , 1993, Journal of magnetic resonance imaging : JMRI.

[21]  E. Samulski,et al.  The measurement of cross-relaxation effects in the proton NMR spin-lattice relaxation of water in biological systems: Hydrated collagen and muscle☆ , 1978 .

[22]  Bob S. Hu,et al.  Pulsed saturation transfer contrast , 1992, Magnetic resonance in medicine.

[23]  E. Schneider,et al.  Pulsed magnetization transfer versus continuous wave irradiation for tissue contrast enhancement , 1993, Journal of magnetic resonance imaging : JMRI.

[24]  Bob S. Hu,et al.  Magnetization transfer time‐of‐flight magnetic resonance angiography , 1992, Magnetic resonance in medicine.

[25]  R I Grossman,et al.  Experimental allergic encephalomyelitis and multiple sclerosis: lesion characterization with magnetization transfer imaging. , 1992, Radiology.

[26]  V. Mathews,et al.  Combined effects of magnetization transfer and gadolinium in cranial MR imaging and MR angiography. , 1995, AJR. American journal of roentgenology.

[27]  V. Dousset Magnetization transfer imaging in vivo study of normal brain tissues and characterization of multiple sclerosis and experimental allergic encephalomyelitis lesions. , 1993, Journal of neuroradiology. Journal de neuroradiologie.

[28]  S. H. Koenig,et al.  Cholesterol of myelin is the determinant of gray‐white contrast in MRI of brain , 1991, Magnetic resonance in medicine.

[29]  R I Grossman,et al.  Microscopic disease in normal-appearing white matter on conventional MR images in patients with multiple sclerosis: assessment with magnetization-transfer measurements. , 1995, Radiology.

[30]  C J Wallace,et al.  Multiple sclerosis: the impact of MR imaging. , 1992, AJR. American journal of roentgenology.

[31]  D. Miller,et al.  Magnetic resonance in monitoring the treatment of multiple sclerosis , 1994, Annals of neurology.

[32]  N. Lundbom,et al.  Relaxometry of brain: Why white matter appears bright in MRI , 1990, Magnetic resonance in medicine.