Kripke-style Semantics and Completeness for Full Simply Typed Lambda Calculus

[1]  Alonzo Church,et al.  A formulation of the simple theory of types , 1940, Journal of Symbolic Logic.

[2]  Gabriel Scherer Deciding equivalence with sums and the empty type , 2017, POPL.

[3]  H B Curry,et al.  Functionality in Combinatory Logic. , 1934, Proceedings of the National Academy of Sciences of the United States of America.

[4]  J. Girard,et al.  Proofs and types , 1989 .

[5]  Richard Statman,et al.  Lambda Calculus with Types , 2013, Perspectives in logic.

[6]  Henk Barendregt,et al.  The Lambda Calculus: Its Syntax and Semantics , 1985 .

[7]  Roberto Di Cosmo,et al.  A Confluent Reduction for the Extensional Typed lambda-Calculus with Pairs, Sums, Recursion and terminal Object , 1993, ICALP.

[8]  Saul Kripke,et al.  A completeness theorem in modal logic , 1959, Journal of Symbolic Logic.

[9]  Roel C. de Vrijer,et al.  Extending the Lambda Calculus with Surjective Pairing is Conservative , 1989, LICS.

[10]  Saul A. Kripke,et al.  Semantical Analysis of Intuitionistic Logic I , 1965 .

[11]  J. Roger Hindley,et al.  Introduction to Combinators and Lambda-Calculus , 1986 .

[12]  G. Mints A Short Introduction to Intuitionistic Logic , 2000 .

[13]  John C. Mitchell,et al.  Kripke-Style Models for Typed lambda Calculus , 1991, Ann. Pure Appl. Log..

[14]  Albert R. Meyer,et al.  What is a Model of the Lambda Calculus? , 1982, Inf. Control..

[15]  J. Roger Hindley,et al.  The Completeness Theorem for Typing lambda-Terms , 1983, Theor. Comput. Sci..