The effects of water and microstructure on the performance of polymer electrolyte fuel cells

In this paper, we present a comprehensive non-isothermal, one-dimensional model of the cathode side of a Polymer Electrolyte Fuel Cell. We explicitly include the catalyst layer, gas diffusion layer and the membrane. The catalyst layer and gas diffusion layer are characterized by several measurable microstructural parameters. We model all three phases of water, with a view to capturing the effect that each has on the performance of the cell. A comparison with experiment is presented, demonstrating excellent agreement, particularly with regard to the effects of water activity in the channels and how it impacts flooding and membrane hydration. We present several results pertaining to the effects of water on the current density (or cell voltage), demonstrating the role of micro-structure, liquid water removal from the channel, water activity, membrane and gas diffusion layer thickness and channel temperature. These results provide an indication of the changes that are required to achieve optimal performance through improved water management and MEA-component design. Moreover, with its level of detail, the model we develop forms an excellent basis for a multi-dimensional model of the entire membrane electrode assembly.

[1]  Datong Song,et al.  Numerical optimization study of the catalyst layer of PEM fuel cell cathode , 2004 .

[2]  Chaoyang Wang,et al.  Visualization of Liquid Water Transport in a PEFC , 2004 .

[3]  Hubert A. Gasteiger,et al.  Handbook of fuel cells : fundamentals technology and applications , 2003 .

[4]  Chao-Yang Wang,et al.  Computational Fluid Dynamics Modeling of Proton Exchange Membrane Fuel Cells , 2000 .

[5]  COMPUTATIONAL SIMULATION OF WATER TRANSPORT IN PEM FUEL CELLS USING AN IMPROVED MEMBRANE MODEL , 2000 .

[6]  R. Datta,et al.  Modeling of Conductive Transport in Proton-Exchange Membranes for Fuel Cells , 2000 .

[7]  Trung Van Nguyen,et al.  A Two-Dimensional, Two-Phase, Multicomponent, Transient Model for the Cathode of a Proton Exchange Membrane Fuel Cell Using Conventional Gas Distributors [Journal of the Electrochemical Society 148, A1324 (2001)] , 2003 .

[8]  G. Lindbergh,et al.  Investigation of Mass-Transport Limitations in the Solid Polymer Fuel Cell Cathode I. Mathematical Model , 2002 .

[9]  Nathan P. Siegel,et al.  A two-dimensional computational model of a PEMFC with liquid water transport , 2004 .

[10]  Qingzhi Guo,et al.  A Steady-State Impedance Model for a PEMFC Cathode , 2004 .

[11]  T. Nguyen,et al.  Two-phase flow model of the cathode of PEM fuel cells using interdigitated flow fields , 2000 .

[12]  Adam Z. Weber,et al.  Modeling Transport in Polymer‐Electrolyte Fuel Cells , 2004 .

[13]  Sandip Mazumder,et al.  A Generalized Phenomenological Model and Database for the Transport of Water and Current in Polymer Electrolyte Membranes , 2005 .

[14]  L. B. Wang,et al.  Numerical simulation of enhancement of mass transfer in the cathode electrode of a PEM fuel cell by magnet particles deposited in the cathode-side catalyst layer , 2005 .

[15]  T. Springer,et al.  Polymer Electrolyte Fuel Cell Model , 1991 .

[16]  B. Wetton,et al.  Water Management in PEM Fuel Cells , 2004 .

[17]  Kornyshe Electrochemical impedance of the cathode catalyst layer in polymer electrolyte fuel cells , 1999 .

[18]  Yongzhu Fu,et al.  Development of novel self-humidifying composite membranes for fuel cells , 2003 .

[19]  V. S. Vaidhyanathan,et al.  Transport phenomena , 2005, Experientia.

[20]  J. Hinatsu,et al.  Water Uptake of Perfluorosulfonic Acid Membranes from Liquid Water and Water Vapor , 1994 .

[21]  P. Ekdunge,et al.  Modelling the PEM fuel cell cathode , 1997 .

[22]  A. A. Kornyshev,et al.  Modelling the performance of the cathode catalyst layer of polymer electrolyte fuel cells , 1998 .

[23]  Mark M. Meerschaert,et al.  Mathematical Modeling , 2014, Encyclopedia of Social Network Analysis and Mining.

[24]  Nathan P. Siegel,et al.  Single domain PEMFC model based on agglomerate catalyst geometry , 2003 .

[25]  A. Weber,et al.  Transport in Polymer-Electrolyte Membranes II. Mathematical Model , 2004 .

[26]  S. Gottesfeld,et al.  POLYMER ELECTROLYTE FUEL CELLS. , 1997 .

[27]  Chao-Yang Wang,et al.  Multiphase flow and heat transfer in porous media , 1997 .

[28]  Brooks R. Friess,et al.  Water Management in PEM Fuel Cells , 2008 .

[29]  Chao-Yang Wang,et al.  Two-Phase Transport in Polymer Electrolyte Fuel Cells with Bilayer Cathode Gas Diffusion Media , 2005 .

[30]  Z. H. Wang,et al.  Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells , 2000 .

[31]  F. Topin,et al.  Transient Model of Heat, Mass, and Charge Transfer as Well as Electrochemistry in the Cathode Catalyst Layer of a PEMFC , 2002 .

[32]  Michael Eikerling,et al.  Structure and performance of different types of agglomerates in cathode catalyst layers of PEM fuel cells , 2004 .

[33]  T. Nguyen,et al.  Modeling Liquid Water Effects in the Gas Diffusion and Catalyst Layers of the Cathode of a PEM Fuel Cell , 2004 .

[34]  J. Weidner,et al.  Diffusion of water in Nafion 115 membranes , 2000 .

[35]  Adam Z. Weber,et al.  Transport in Polymer-Electrolyte Membranes I. Physical Model , 2004 .

[36]  Don W. Green,et al.  Perry's Chemical Engineers' Handbook , 2007 .

[37]  A. Ohta,et al.  Improved Preparation Process of Very‐Low‐Platinum‐Loading Electrodes for Polymer Electrolyte Fuel Cells , 1998 .

[38]  D. Collins,et al.  Power Sources 3 , 1971 .

[39]  A. Kornyshev,et al.  Electrochemical impedance of the cathode catalyst layer in polymer electrolyte fuel cells , 1999 .

[40]  Jin Hyun Nam,et al.  Effective diffusivity and water-saturation distribution in single- and two-layer PEMFC diffusion medium , 2003 .

[41]  Hsiao-Kuo Hsuen Mechanistic approach to performance equations for cathodes in polymer electrolyte fuel cells , 2003 .

[42]  Markku J. Lampinen,et al.  Analysis of Free Energy and Entropy Changes for Half‐Cell Reactions , 1993 .

[43]  A. Weber,et al.  Modeling transport in polymer-electrolyte fuel cells. , 2004, Chemical reviews.

[44]  Sandip Mazumder,et al.  Rigorous 3-D mathematical modeling of PEM fuel cells. II. Model predictions with liquid water transport , 2003 .

[45]  Hyunchul Ju,et al.  A single-phase, non-isothermal model for PEM fuel cells , 2005 .

[46]  K. Yin,et al.  Parametric Study of Proton-Exchange-Membrane Fuel Cell Cathode Using an Agglomerate Model , 2005 .

[47]  I. Hsing,et al.  Absorption, Desorption, and Transport of Water in Polymer Electrolyte Membranes for Fuel Cells , 2005 .

[48]  Erik Middelman,et al.  Improved PEM fuel cell electrodes by controlled self-assembly , 2002 .

[49]  Z. Ogumi,et al.  Gas Permeation in SPE Method I . Oxygen Permeation Through Nafion and NEOSEPTA , 1984 .

[50]  K. Karan,et al.  An improved two-dimensional agglomerate cathode model to study the influence of catalyst layer structural parameters , 2005 .

[51]  S. Litster,et al.  PEM fuel cell electrodes , 2004 .

[52]  Trung Van Nguyen,et al.  A Two-Dimensional, Two-Phase, Multicomponent, Transient Model for the Cathode of a Proton Exchange Membrane Fuel Cell Using Conventional Gas Distributors , 2001 .

[53]  Ned Djilali,et al.  Systematic parameter estimation for PEM fuel cell models , 2005 .

[54]  Chao-Yang Wang,et al.  Electron Transport in PEFCs , 2004 .

[55]  Chao-Yang Wang,et al.  Model of Two-Phase Flow and Flooding Dynamics in Polymer Electrolyte Fuel Cells , 2005 .

[56]  G. Rosen The mathematical theory of diffusion and reaction in permeable catalysts , 1976 .

[57]  Yuko Aoyama,et al.  Investigation of the Microstructure in the Catalyst Layer and Effects of Both Perfluorosulfonate Ionomer and PTFE‐Loaded Carbon on the Catalyst Layer of Polymer Electrolyte Fuel Cells , 1995 .

[58]  S. Nakao,et al.  Morphological control of PEMFC electrode by graft polymerization of polymer electrolyte onto platinum-supported carbon black , 2004 .

[59]  Minkmas V. Williams,et al.  Influence of Convection Through Gas-Diffusion Layers on Limiting Current in PEM FCs Using a Serpentine Flow Field , 2004 .

[60]  Ralph E. White,et al.  Parameter Estimates for a PEMFC Cathode , 2004, 1308.4590.

[61]  G. Lindbergh,et al.  Investigation of Mass-Transport Limitations in the Solid Polymer Fuel Cell Cathode II. Experimental , 2002 .