A sodium manganese ferrocyanide thin film for Na-ion batteries.

A thin film of sodium manganese ferrocyanide, Na1.32Mn[Fe(CN)6]0.83·3.5H2O, exhibits discharge capacity (= 109 mA h g(-1)) and discharge voltage (3.4 V in average) at 0.5 C against Na in aprotic solvent. The ex situ XRD experiments reveal that the host framework remains cubic without showing any structural phase transition during the charge process. The discharge property is discernible up to 40 C.

[1]  Kazuma Gotoh,et al.  Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard‐Carbon Electrodes and Application to Na‐Ion Batteries , 2011 .

[2]  Shinichi Komaba,et al.  P2-type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries. , 2012, Nature materials.

[3]  Gérard Férey,et al.  Hybrid porous solids: past, present, future. , 2008, Chemical Society reviews.

[4]  Y. Moritomo,et al.  Thin Film Electrode of Prussian Blue Analogue for Li-ion Battery , 2011 .

[5]  F. Izumi,et al.  Three-Dimensional Visualization in Powder Diffraction , 2007 .

[6]  Y. Moritomo,et al.  Cubic-Rhombohedral Structural Phase Transition in Na1.32Mn[Fe(CN)6]0.83·3.6H2O , 2011 .

[7]  Hiroyuki Nishide,et al.  Toward Flexible Batteries , 2008, Science.

[8]  Montse Casas-Cabanas,et al.  Room-temperature single-phase Li insertion/extraction in nanoscale Li(x)FePO4. , 2008, Nature materials.

[9]  Y. Moritomo,et al.  Thin Film Electrodes of Prussian Blue Analogues with Rapid Li+ Intercalation , 2012 .

[10]  Omar M Yaghi,et al.  The pervasive chemistry of metal-organic frameworks. , 2009, Chemical Society reviews.

[11]  K. Hashimoto,et al.  Transparent and Colored Magnetic Thin Films: (FeIIxCrII1-x)1.5[CrIII(CN)6] , 1998 .

[12]  K. Hashimoto,et al.  Design of novel magnets using Prussian blue analogues , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[13]  T. Uruga,et al.  Electronic Structure of Hole-Doped Transition Metal Cyanides , 2010 .

[14]  Kingo Itaya,et al.  Spectroelectrochemistry and electrochemical preparation method of Prussian blue modified electrodes , 1982 .

[15]  S. Kitagawa,et al.  Soft porous crystals. , 2009, Nature chemistry.

[16]  H. Güdel,et al.  Structural chemistry of polynuclear transition metal cyanides , 1973 .

[17]  M. Armand,et al.  Building better batteries , 2008, Nature.

[18]  Y. Moritomo,et al.  Two-Electron Reaction without Structural Phase Transition in Nanoporous Cathode Material , 2012 .

[19]  Jungeun Kim,et al.  Symmetry switch of cobalt ferrocyanide framework by alkaline cation exchange. , 2010, Journal of the American Chemical Society.

[20]  John B Goodenough,et al.  Prussian blue: a new framework of electrode materials for sodium batteries. , 2012, Chemical communications.

[21]  K. Hashimoto,et al.  Humidity-induced magnetization and magnetic pole inversion in a cyano-bridged metal assembly , 2004, Nature materials.

[22]  Atsushi Sakuda,et al.  Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries , 2012, Nature Communications.

[23]  V. Marvaud,et al.  MOLECULES TO BUILD SOLIDS : HIGH TC MOLECULE-BASED MAGNETS BY DESIGN AND RECENT REVIVAL OF CYANO COMPLEXES CHEMISTRY , 1999 .

[24]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .