Herschel Detects a Massive Dust Reservoir in Supernova 1987A

The large amount of dust produced by this supernova may help explain the dust observed in young galaxies. We report far-infrared and submillimeter observations of supernova 1987A, the star whose explosion was observed on 23 February 1987 in the Large Magellanic Cloud, a galaxy located 160,000 light years away. The observations reveal the presence of a population of cold dust grains radiating with a temperature of about 17 to 23 kelvin at a rate of about 220 times the luminosity of the Sun. The intensity and spectral energy distribution of the emission suggest a dust mass of about 0.4 to 0.7 times the mass of the Sun. The radiation must originate from the supernova ejecta and requires the efficient precipitation of all refractory material into dust. Our observations imply that supernovae can produce the large dust masses detected in young galaxies at very high redshifts.

[1]  J. Sollerman,et al.  X-ray illumination of the ejecta of supernova 1987A , 2011, Nature.

[2]  C. Fransson,et al.  The 44Ti-powered spectrum of SN 1987A , 2011, 1103.3653.

[3]  J. Sollerman,et al.  Observing Supernova 1987A with the Refurbished Hubble Space Telescope , 2010, Science.

[4]  M. Sauvage,et al.  Herschel Inventory of The Agents of Galaxy Evolution (HERITAGE): the Large Magellanic Cloud dust , 2010, 1006.0985.

[5]  E. Dwek,et al.  THE ORIGIN OF DUST IN THE EARLY UNIVERSE: PROBING THE STAR FORMATION HISTORY OF GALAXIES BY THEIR DUST CONTENT , 2010, 1011.1303.

[6]  S. Ott,et al.  Herschel Space Observatory - An ESA facility for far-infrared and submillimetre astronomy , 2010, 1005.5331.

[7]  S. J. Liu,et al.  Herschel : the first science highlights Special feature L etter to the E ditor The Herschel-SPIRE instrument and its in-flight performance , 2010 .

[8]  H. Roussel,et al.  In-flight calibration of the Herschel-SPIRE instrument , 2010, 1005.5073.

[9]  D. Burrows,et al.  FIVE YEARS OF MID-INFRARED EVOLUTION OF THE REMNANT OF SN 1987A: THE ENCOUNTER BETWEEN THE BLAST WAVE AND THE DUSTY EQUATORIAL RING , 2010, 1004.0928.

[10]  D. Maoz,et al.  The supernova rate and delay time distribution in the Magellanic Clouds , 2010, 1003.3031.

[11]  S. Mattila,et al.  ABUNDANCES AND DENSITY STRUCTURE OF THE INNER CIRCUMSTELLAR RING AROUND SN 1987A , 2010, 1002.4195.

[12]  G. Hasinger,et al.  High resolution X-ray spectroscopy of SN 1987 A: monitoring with XMM-Newton , 2010, 1002.1865.

[13]  A. Tzioumis,et al.  MULTIFREQUENCY RADIO MEASUREMENTS OF SUPERNOVA 1987A OVER 22 YEARS , 2009, 0912.4979.

[14]  R. N. Manchester,et al.  HIGH RESOLUTION 36 GHz IMAGING OF THE SUPERNOVA REMNANT OF SN 1987A , 2009, 0909.3703.

[15]  D. Burrows,et al.  X-RAY EVOLUTION OF SNR 1987A: THE RADIAL EXPANSION , 2009, 0908.2097.

[16]  C. Leitherer,et al.  THE MASS LOSS RETURN FROM EVOLVED STARS TO THE LARGE MAGELLANIC CLOUD: EMPIRICAL RELATIONS FOR EXCESS EMISSION AT 8 AND 24 μm , 2009, 0903.1661.

[17]  M. Barlow,et al.  The global gas and dust budget of the Large Magellanic Cloud: AGB stars and supernovae, and the impact on the ISM evolution , 2009, 0903.1123.

[18]  P. Challis,et al.  Time evolution of the line emission from the inner circumstellar ring of SN 1987A and its hot spots , 2008, 0810.2661.

[19]  Thomas Henning,et al.  The Photodetector Array Camera and Spectrometer (PACS) for the Herschel Space Observatory , 2004, Astronomical Telescopes + Instrumentation.

[20]  A. Habe,et al.  Dust Destruction in the High-Velocity Shocks Driven by Supernovae in the Early Universe , 2006, astro-ph/0605193.

[21]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[22]  R. Kirshner,et al.  SN 1987A after 18 Years: Mid-Infrared Gemini and Spitzer Observations of the Remnant , 2006, astro-ph/0601495.

[23]  Linda J. Smith,et al.  SPITZER SURVEY OF THE LARGE MAGELLANIC CLOUD, SURVEYING THE AGENTS OF A GALAXY'S EVOLUTION (SAGE). IV. DUST PROPERTIES IN THE INTERSTELLAR MEDIUM , 2005, Proceedings of the International Astronomical Union.

[24]  M. Wolff,et al.  A Quantitative Comparison of the Small Magellanic Cloud, Large Magellanic Cloud, and Milky Way Ultraviolet to Near-Infrared Extinction Curves , 2003 .

[25]  T. Henning,et al.  Rosseland and Planck mean opacities for protoplanetary discs , 2003, astro-ph/0308344.

[26]  Geoffrey C. Clayton,et al.  A Quantitative Comparison of SMC, LMC, and Milky Way UV to NIR Extinction Curves , 2003, astro-ph/0305257.

[27]  M. Edmunds,et al.  Dust formation in early galaxies , 2003, astro-ph/0302566.

[28]  J. Weingartner,et al.  Dust Grain-Size Distributions and Extinction in the Milky Way, Large Magellanic Cloud, and Small Magellanic Cloud , 2001 .

[29]  John A. Nousek,et al.  The X-Ray Remnant of SN 1987A , 2000, astro-ph/0009265.

[30]  J. Weingartner,et al.  Dust Grain Size Distributions and Extinction in the Milky Way, LMC, and SMC , 2000, astro-ph/0008146.

[31]  R. Kirshner,et al.  Young Stellar Populations around SN 1987A , 2000, astro-ph/0001476.

[32]  L. Colangeli,et al.  Optical constants of cosmic carbon analogue grains — I. Simulation of clustering by a modified continuous distribution of ellipsoids , 1996 .

[33]  A. Tielens,et al.  Grain Shattering in Shocks: The Interstellar Grain Size Distribution , 1996 .

[34]  J. Holtzman,et al.  Hubble space telescope observations of the SN 1987A triple ring nebula , 1995 .

[35]  Martin G. Cohen,et al.  Airborne Spectrophotometry of SN 1987A from 1.7 to 12.6 Microns: Time History of the Dust Continuum and Line Emission , 1993 .

[36]  Ari Laor,et al.  Spectroscopic constraints on the properties of dust in active galactic nuclei , 1993 .

[37]  R. McCray Supernova 1987A Revisited , 1993 .

[38]  Peter G. Martin,et al.  Shape and clustering effects on the optical properties of amorphous carbon , 1991 .

[39]  K. Nomoto,et al.  Explosive nucleosynthesis in SN 1987A. II - Composition, radioactivities, and the neutron star mass , 1990 .

[40]  J. Graham,et al.  Far-infrared spectrophotometry of SN 1987A - Days 265 and 267 , 1989 .

[41]  S. Chakrabarti Standing shocks in isothermal rotating winds and accretion. II - Effects of viscous dissipation , 1989 .

[42]  J. Graham,et al.  Far-infrared observations of thermal dust emission from supernova 1987A , 1989, Nature.

[43]  B. Fryxell,et al.  Instabilities and nonradial motion in SN 1987A , 1989 .

[44]  J. Melnick,et al.  Structure and Dynamics of the Interstellar medium , 1989 .

[45]  S. Woosley,et al.  Recent Results on SN 1987A , 1988, Publications of the Astronomical Society of Australia.

[46]  N. Kawai,et al.  Discovery of an unusual hard X-ray source in the region of supernova 1987A , 1987, Nature.

[47]  G. Skinner,et al.  Discovery of hard X-ray emission from supernova 1987A , 1987, Nature.

[48]  R. Chevalier,et al.  Circumstellar matter and the nature of the SN1987A progenitor star , 1987, Nature.

[49]  Park,et al.  Observation of a neutrino burst in coincidence with supernova 1987A in the Large Magellanic Cloud. , 1987, Physical review letters.

[50]  Hirata,et al.  Observation of a neutrino burst from the supernova SN1987A. , 1987, Physical review letters.