Wavefield compression for adjoint methods in full-waveform inversion

Adjoint methods are a key ingredient of gradient-based full-waveform inversion schemes. While being conceptually elegant, they face the challenge of massive memory requirements caused by the opposite time directions of forward and adjoint simulations and the necessity to access both wavefields simultaneously for the computation of the sensitivity kernel. To overcome this bottleneck, we have developed lossy compression techniques that significantly reduce the memory requirements with only a small computational overhead. Our approach is tailored to adjoint methods and uses the fact that the computation of a sufficiently accurate sensitivity kernel does not require the fully resolved forward wavefield. The collection of methods comprises reinterpolation with a coarse temporal grid as well as adaptively chosen polynomial degree and floating-point precision to represent spatial snapshots of the forward wavefield on hierarchical grids. Furthermore, the first arrivals of adjoint waves are used to identify “shadow zones” that do not contribute to the sensitivity kernel. Numerical experiments show the high potential of this approach achieving an effective compression factor of three orders of magnitude with only a minor reduction in the rate of convergence. Moreover, it is computationally cheap and straightforward to integrate in finite-element wave propagation codes with possible extensions to finite-difference methods.

[1]  Alexey Gokhberg,et al.  Full-waveform inversion on heterogeneous HPC systems , 2016, Comput. Geosci..

[2]  William W. Symes,et al.  Reverse time migration with optimal checkpointing , 2007 .

[3]  O. Ghattas,et al.  A Newton-CG method for large-scale three-dimensional elastic full-waveform seismic inversion , 2008 .

[4]  B. Kennett,et al.  Determination of the influence zone for surface wave paths , 2002 .

[5]  Mauricio Hanzich,et al.  Efficient Lossy Compression for Seismic Processing , 2013 .

[6]  T. Jordan,et al.  FAST TRACK PAPER: Full three-dimensional tomography: a comparison between the scattering-integral and adjoint-wavefield methods , 2007 .

[7]  C. Böhm Efficient Inversion Methods for Constrained Parameter Identification in Full-Waveform Seismic Tomography , 2015 .

[8]  Leszek F. Demkowicz,et al.  A Fully Automatic hp-Adaptivity , 2002, J. Sci. Comput..

[9]  A. Tarantola,et al.  Waveform inversion of marine reflection seismograms for P impedance and Poisson's ratio , 1996 .

[10]  J. J. Moré,et al.  Quasi-Newton Methods, Motivation and Theory , 1974 .

[11]  T. Leeuwen,et al.  Fast randomized full-waveform inversion with compressive sensing , 2012 .

[12]  Gary J. Sullivan,et al.  Video Compression - From Concepts to the H.264/AVC Standard , 2005, Proceedings of the IEEE.

[13]  Qinya Liu,et al.  Tomography, Adjoint Methods, Time-Reversal, and Banana-Doughnut Kernels , 2004 .

[14]  Andreas Griewank,et al.  Achieving logarithmic growth of temporal and spatial complexity in reverse automatic differentiation , 1992 .

[15]  Jeroen Tromp,et al.  Supplementary information for Structure of the European Upper Mantle revealed by adjoint tomography , 2012 .

[16]  Jeroen Tromp,et al.  Spectral-element and adjoint methods in seismology , 2008 .

[17]  Andreas Fichtner,et al.  Full seismic waveform tomography for upper-mantle structure in the Australasian region using adjoint methods , 2009 .

[18]  F. Herrmann,et al.  A new optimization approach for source-encoding full-waveform inversion , 2013 .

[19]  Ludovic Métivier,et al.  Full Waveform Inversion and the Truncated Newton Method , 2013, SIAM J. Sci. Comput..

[20]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[21]  Stephan Husen,et al.  Local earthquake tomography between rays and waves: fat ray tomography , 2001 .

[22]  Lijian Tan,et al.  Time-reversal checkpointing methods for RTM and FWI , 2012 .

[23]  A. Fichtner,et al.  The Iceland-Jan Mayen plume system and its impact on mantle dynamics in the North Atlantic region: Evidence from full-waveform inversion , 2013 .

[24]  Rolf Stenberg,et al.  Numerical Mathematics and Advanced Applications ENUMATH 2017 , 2019, Lecture Notes in Computational Science and Engineering.

[25]  Felix J. Herrmann,et al.  Fast waveform inversion without source‐encoding , 2013 .

[26]  Scott B. Baden,et al.  An Adaptive Sub-sampling Method for In-memory Compression of Scientific Data , 2009, 2009 Data Compression Conference.

[27]  Hicks,et al.  Gauss–Newton and full Newton methods in frequency–space seismic waveform inversion , 1998 .

[28]  Sebastian Götschel,et al.  State Trajectory Compression for Optimal Control with Parabolic PDEs , 2012, SIAM J. Sci. Comput..

[29]  Carl Tape,et al.  Seismic tomography of the southern California crust based on spectral‐element and adjoint methods , 2010 .

[30]  Michael Ulbrich,et al.  A Semismooth Newton-CG Method for Constrained Parameter Identification in Seismic Tomography , 2015, SIAM J. Sci. Comput..

[31]  Sebastian Götschel,et al.  Lossy compression for PDE-constrained optimization: adaptive error control , 2015, Comput. Optim. Appl..

[32]  Mauricio Hanzich,et al.  Lossy Data Compression with DCT Transforms , 2014, HiPC 2014.

[33]  Emanuele Casarotti,et al.  Forward and adjoint simulations of seismic wave propagation on fully unstructured hexahedral meshes , 2011 .

[34]  Karl Kunisch,et al.  Numerical Mathematics and Advanced Applications , 2008 .

[35]  Felix J. Herrmann,et al.  3D Frequency-Domain Seismic Inversion with Controlled Sloppiness , 2014, SIAM J. Sci. Comput..

[36]  T. Kunz,et al.  Three dimensional SEG/EAEG models; an update , 1996 .

[37]  Stephen J. Wright,et al.  Numerical Optimization (Springer Series in Operations Research and Financial Engineering) , 2000 .

[38]  Stephan Husen,et al.  Local earthquake tomography between rays and waves : fat ray tomography , 2001 .

[39]  A. Fichtner Full Seismic Waveform Modelling and Inversion , 2011 .

[40]  Jean Virieux,et al.  An overview of full-waveform inversion in exploration geophysics , 2009 .

[41]  Maarten V. de Hoop,et al.  Banana-doughnut kernels and mantle tomography , 2005 .

[42]  Andreas Griewank,et al.  Advantages of Binomial Checkpointing for Memory-reduced Adjoint Calculations , 2004 .