This information is current as Experimental Cerebral Malaria Required for the Development of T Cells Is + Granzyme B Expression by CD 8 and

[1]  T. Sparwasser,et al.  Regulatory T Cells , 2011, Methods in Molecular Biology.

[2]  J. Golenser,et al.  Coincident parasite and CD8 T cell sequestration is required for development of experimental cerebral malaria. , 2011, International journal for parasitology.

[3]  A. Haque,et al.  CD4+ Natural Regulatory T Cells Prevent Experimental Cerebral Malaria via CTLA-4 When Expanded In Vivo , 2010, PLoS pathogens.

[4]  A. Loukas,et al.  Immune-Mediated Mechanisms of Parasite Tissue Sequestration during Experimental Cerebral Malaria , 2010, The Journal of Immunology.

[5]  M. Mota,et al.  Accumulation of Plasmodium berghei-Infected Red Blood Cells in the Brain Is Crucial for the Development of Cerebral Malaria in Mice , 2010, Infection and Immunity.

[6]  S. Koyasu,et al.  Response to Comment on “Critical Roles of NK and CD8+ T Cells in Central Nervous System Listeriosis” , 2009, The Journal of Immunology.

[7]  A. Tsun,et al.  The Strength of T Cell Receptor Signal Controls the Polarization of Cytotoxic Machinery to the Immunological Synapse , 2009, Immunity.

[8]  B. Evavold,et al.  Pathogenic MOG-reactive CD8+ T cells require MOG-reactive CD4+ T cells for sustained CNS inflammation during chronic EAE , 2009, Journal of Neuroimmunology.

[9]  B. Roysam,et al.  Dynamic Imaging of T Cell-Parasite Interactions in the Brains of Mice Chronically Infected with Toxoplasma gondii1 , 2009, The Journal of Immunology.

[10]  M. Norman,et al.  IP-10-Mediated T Cell Homing Promotes Cerebral Inflammation over Splenic Immunity to Malaria Infection , 2009, PLoS pathogens.

[11]  M. Jenkins,et al.  Dendritic cell antigen presentation drives simultaneous cytokine production by effector and regulatory T cells in inflamed skin. , 2009, Immunity.

[12]  Gregory F. Wu,et al.  Behavior of parasite-specific effector CD8+ T cells in the brain and visualization of a kinesis-associated system of reticular fibers. , 2009, Immunity.

[13]  R. Price,et al.  Angiopoietin-2 is associated with decreased endothelial nitric oxide and poor clinical outcome in severe falciparum malaria , 2008, Proceedings of the National Academy of Sciences.

[14]  David C. Gondek,et al.  Transplantation Survival Is Maintained by Granzyme B+ Regulatory Cells and Adaptive Regulatory T Cells , 2008, The Journal of Immunology.

[15]  G. Belz,et al.  Blood-stage Plasmodium infection induces CD8+ T lymphocytes to parasite-expressed antigens, largely regulated by CD8α+ dendritic cells , 2008, Proceedings of the National Academy of Sciences.

[16]  A. Brunn,et al.  Molecular Mimicry between Neurons and an Intracerebral Pathogen Induces a CD8 T Cell-Mediated Autoimmune Disease1 , 2008, The Journal of Immunology.

[17]  A. Haque,et al.  Common Strategies To Prevent and Modulate Experimental Cerebral Malaria in Mouse Strains with Different Susceptibilities , 2008, Infection and Immunity.

[18]  P. Walker,et al.  Brain microenvironment promotes the final functional maturation of tumor-specific effector CD8+ T cells , 2008, The Journal of Immunology.

[19]  N. Van Rooijen,et al.  Dendritic Cell-Induced Memory T Cell Activation in Nonlymphoid Tissues , 2008, Science.

[20]  T. Ley,et al.  Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance. , 2007, Immunity.

[21]  R. Liblau,et al.  An antigen-specific pathway for CD8 T cells across the blood-brain barrier , 2007, The Journal of experimental medicine.

[22]  A. Haque,et al.  A role for natural regulatory T cells in the pathogenesis of experimental cerebral malaria. , 2007, The American journal of pathology.

[23]  A. Haque,et al.  Cutting Edge: Conventional Dendritic Cells Are the Critical APC Required for the Induction of Experimental Cerebral Malaria1 , 2007, The Journal of Immunology.

[24]  K. Haldar,et al.  Malaria: mechanisms of erythrocytic infection and pathological correlates of severe disease. , 2007, Annual review of pathology.

[25]  M. Deckert,et al.  TNF Is Important for Pathogen Control and Limits Brain Damage in Murine Cerebral Listeriosis1 , 2006, The Journal of Immunology.

[26]  R. Webby,et al.  Addition of a Prominent Epitope Affects Influenza A Virus-Specific CD8+ T Cell Immunodominance Hierarchies When Antigen Is Limiting1 , 2006, The Journal of Immunology.

[27]  P. Cazenave,et al.  Clusters of cytokines determine malaria severity in Plasmodium falciparum-infected patients from endemic areas of Central India. , 2006, The Journal of infectious diseases.

[28]  E. Shevach,et al.  Activated CD4+CD25+ T cells selectively kill B lymphocytes. , 2006, Blood.

[29]  I. Ulasov,et al.  Cross-priming of T cells to intracranial tumor antigens elicits an immune response that fails in the effector phase but can be augmented with local immunotherapy , 2006, Journal of Neuroimmunology.

[30]  Kamolrat Silamut,et al.  Estimation of the Total Parasite Biomass in Acute Falciparum Malaria from Plasma PfHRP2 , 2005, PLoS medicine.

[31]  David C. Gondek,et al.  Cutting Edge: Contact-Mediated Suppression by CD4+CD25+ Regulatory Cells Involves a Granzyme B-Dependent, Perforin-Independent Mechanism1 , 2005, The Journal of Immunology.

[32]  T. Ley,et al.  Human T regulatory cells can use the perforin pathway to cause autologous target cell death. , 2004, Immunity.

[33]  Nicholas J White,et al.  Reduced microcirculatory flow in severe falciparum malaria: pathophysiology and electron-microscopic pathology. , 2004, Acta tropica.

[34]  Wenjiang J. Fu,et al.  Differentiating the pathologies of cerebral malaria by postmortem parasite counts , 2004, Nature Medicine.

[35]  Julie A Simpson,et al.  An ultrastructural study of the brain in fatal Plasmodium falciparum malaria. , 2003, The American journal of tropical medicine and hygiene.

[36]  L. Rénia,et al.  Chemokine Receptor CCR2 Is Not Essential for the Development of Experimental Cerebral Malaria , 2003, Infection and Immunity.

[37]  D. Seilhean,et al.  Perforin-Dependent Brain-Infiltrating Cytotoxic CD8+ T Lymphocytes Mediate Experimental Cerebral Malaria Pathogenesis 1 , 2003, The Journal of Immunology.

[38]  M. Deckert,et al.  Protective Immunosurveillance of the Central Nervous System by Listeria-Specific CD4 and CD8 T Cells in Systemic Listeriosis in the Absence of Intracerebral Listeria1 , 2002, The Journal of Immunology.

[39]  J. Goverman,et al.  A Pathogenic Role for Myelin-Specific Cd8+ T Cells in a Model for Multiple Sclerosis , 2001, The Journal of experimental medicine.

[40]  D. Griffin,et al.  Interferon-γ-Mediated Site-Specific Clearance of Alphavirus from CNS Neurons , 2001, Science.

[41]  T. Calzascia,et al.  THE BRAIN PARENCHYMA IS PERMISSIVE FOR FULL ANTI-TUMOUR CTL EFFECTOR FUNCTION, EVEN IN THE ABSENCE OF CD4+ T CELLS. , 2000 .

[42]  G. Plautz,et al.  Cross-Presentation of Tumor Antigens to Effector T Cells Is Sufficient to Mediate Effective Immunotherapy of Established Intracranial Tumors1 , 2000, The Journal of Immunology.

[43]  L. Rénia,et al.  Involvement of IFN‐γ receptor‐mediated signaling in pathology and anti‐malarial immunity induced by Plasmodium berghei infection , 2000 .

[44]  N. Day,et al.  The prognostic and pathophysiologic role of pro- and antiinflammatory cytokines in severe malaria. , 1999, The Journal of infectious diseases.

[45]  Kevin Marsh,et al.  A polymorphism that affects OCT-1 binding to the TNF promoter region is associated with severe malaria , 1999, Nature Genetics.

[46]  P. Morel,et al.  Differential reactivity of brain microvascular endothelial cells to TNF reflects the genetic susceptibility to cerebral malaria , 1998, European journal of immunology.

[47]  Moses Rodriguez,et al.  CD4+ and CD8+ T Cells Make Discrete Contributions to Demyelination and Neurologic Disease in a Viral Model of Multiple Sclerosis , 1998, Journal of Virology.

[48]  B. Engelhardt,et al.  Adhesion molecule phenotype of T lymphocytes in inflamed CNS , 1998, Journal of Neuroimmunology.

[49]  G. Grau,et al.  Expression of major histocompatibility complex antigens on mouse brain microvascular endothelial cells in relation to susceptibility to cerebral malaria , 1997, Immunology.

[50]  R. Sauerwein,et al.  Depletion of CD4+ or CD8+ T-cells prevents Plasmodium berghei induced cerebral malaria in end-stage disease , 1997, Parasitology.

[51]  David D. Manning,et al.  Participation of lymphocyte subpopulations in the pathogenesis of experimental murine cerebral malaria. , 1996, Journal of immunology.

[52]  R. McLeod,et al.  Effects of human class I transgenes on Toxoplasma gondii cyst formation. , 1994, Journal of immunology.

[53]  Timothy J. Ley,et al.  Cytotoxic lymphocytes require granzyme B for the rapid induction of DNA fragmentation and apoptosis in allogeneic target cells , 1994, Cell.

[54]  Kristin A. Hogquist,et al.  T cell receptor antagonist peptides induce positive selection , 1994, Cell.

[55]  J. Fazakerley,et al.  In vivo depletion of CD8+ T cells prevents lesions of demyelination in Semliki Forest virus infection , 1993, Journal of virology.

[56]  B. M. Greenwood,et al.  TNF concentration in fatal cerebral, non-fatal cerebral, and uncomplicated Plasmodium falciparum malaria , 1990, The Lancet.

[57]  P. Vassalli,et al.  Monoclonal antibody against interferon gamma can prevent experimental cerebral malaria and its associated overproduction of tumor necrosis factor. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[58]  L. F. Fajardo,et al.  Tumor necrosis factor (cachectin) as an essential mediator in murine cerebral malaria. , 1987, Science.

[59]  M. Pollay,et al.  Blood-brain barrier: a definition of normal and altered function. , 1980, Neurosurgery.

[60]  M. J. Tevethia,et al.  CD8 T Cells Targeting a Single Immunodominant Epitope are Sufficient for Elimination of Established SV40 T Antigen-Induced Brain Tumors , 2008 .

[61]  R. Liblau,et al.  CD8 T Cell Responses to Myelin Oligodendrocyte Glycoprotein-Derived Peptides in Humanized HLA-A*0201-Transgenic Mice , 2007 .

[62]  D. Kwiatkowski,et al.  Severe malarial anemia and cerebral malaria are associated with different tumor necrosis factor promoter alleles. , 1999, The Journal of infectious diseases.

[63]  R. Nussenblatt,et al.  Toxoplasma gondii: acquired ocular toxoplasmosis in the murine model, protective role of TNF-alpha and IFN-gamma. , 1994, Experimental parasitology.

[64]  D. Kwiatkowski,et al.  Variation in the TNF-alpha promoter region associated with susceptibility to cerebral malaria. , 1994, Nature.