DIYABC v2.0: a software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data

MOTIVATION DIYABC is a software package for a comprehensive analysis of population history using approximate Bayesian computation on DNA polymorphism data. Version 2.0 implements a number of new features and analytical methods. It allows (i) the analysis of single nucleotide polymorphism data at large number of loci, apart from microsatellite and DNA sequence data, (ii) efficient Bayesian model choice using linear discriminant analysis on summary statistics and (iii) the serial launching of multiple post-processing analyses. DIYABC v2.0 also includes a user-friendly graphical interface with various new options. It can be run on three operating systems: GNU/Linux, Microsoft Windows and Apple Os X. AVAILABILITY Freely available with a detailed notice document and example projects to academic users at http://www1.montpellier.inra.fr/CBGP/diyabc CONTACT: estoup@supagro.inra.fr Supplementary information: Supplementary data are available at Bioinformatics online.

[1]  Jerome Spanier,et al.  Dynamic creation of pseudorandom number generators , 2000 .

[2]  D. Balding,et al.  Approximate Bayesian computation in population genetics. , 2002, Genetics.

[3]  M. Beaumont Approximate Bayesian Computation in Evolution and Ecology , 2010 .

[4]  G. Bertorelle,et al.  ABC as a flexible framework to estimate demography over space and time: some cons, many pros , 2010, Molecular ecology.

[5]  L. Excoffier,et al.  Statistical evaluation of alternative models of human evolution , 2007, Proceedings of the National Academy of Sciences.

[6]  Christian P Robert,et al.  Molecular Ecology Ressources – subject area: Methodological Advances 1 2 Estimation of demo-genetic model probabilities with Approximate Bayesian 3 Computation using linear discriminant analysis on summary statistics , 2012 .

[7]  John Wakeley,et al.  The limits of theoretical population genetics. , 2005, Genetics.

[8]  O. François,et al.  Approximate Bayesian Computation (ABC) in practice. , 2010, Trends in ecology & evolution.

[9]  Richard R. Hudson,et al.  Generating samples under a Wright-Fisher neutral model of genetic variation , 2002, Bioinform..

[10]  Harald Niederreiter,et al.  Monte-Carlo and Quasi-Monte Carlo Methods 1998 , 2000 .

[11]  Jean-Marie Cornuet,et al.  Inference on population history and model checking using DNA sequence and microsatellite data with the software DIYABC (v1.0) , 2010, BMC Bioinformatics.

[12]  R. Nielsen,et al.  Ascertainment biases in SNP chips affect measures of population divergence. , 2010, Molecular biology and evolution.

[13]  M. Blaxter,et al.  Genome-wide genetic marker discovery and genotyping using next-generation sequencing , 2011, Nature Reviews Genetics.

[14]  Jean-Marie Cornuet,et al.  Inferring population history with DIY ABC: a user-friendly approach to approximate Bayesian computation , 2008, Bioinform..